
Intel® Compiler Features + Performance Tips

Rakesh Krishnaiyer

Principal Engineer

Intel Compiler Lab

Performance Analysis
• Compiler optimization reports are a useful tool to gain insight into:

• What was done (and not done) by the compiler

• Important to understand the interactions between multiple optimizations

• Inlining

• Openmp parallelization

• Loop optimizations

• Vectorization

• Reports are based on static compiler analysis

• No dynamic information available

• Hence the reports are most useful when correlated with performance analysis
tools that do hotspot analysis and provide other dynamic information

• Once this information is available, one can study the optimization information
for hotspots (functions/loopnests) in compiler reports

• Compiler can generate multiple versions of loop-nests, important to correlate
with the actual executed version at runtime

• Lot of compiler loop optimizations geared for best vectorization

• Phase ordering of loop opts relative to vectorization and each other

• Often understanding the loop optimization parameters can help tuning

• In many cases, finer control available via pragmas/options

2

Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Common Optimization Switches

3

Windows* Linux*

Mac OS* X

Disable optimization /Od -O0

Optimize for speed (no code size increase) /O1 -O1

Optimize for speed (default) – includes
significant level of loop optimizations

/O2 -O2

More aggressive loop optimizations /O3 -O3

Create symbols for debugging /Zi -g

Multi-file inter-procedural optimization /Qipo -ipo

Profile guided optimization (multi-step build) /Qprof-gen

/Qprof-use

-prof-gen

-prof-use

Optimize for speed across the entire program

**warning: -fast def’n changes over time

“-fp-model fast=2” implies –complex-limited-
range and –fimf-domain-exclusion=15

/fast
(same as: /O3 /Qipo
/Qprec-div- /QxHost
–fp-model fast=2)

-fast
(same as: -ipo –O3 -
no-prec-div -static –
xHost –fp-model
fast=2)

OpenMP 4.0 support /Qopenmp -openmp

Automatic parallelization /Qparallel -parallel

Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Recent Target-specific Compiler Options

• -xMIC-AVX512: Optimizes code for KNL

• -xCORE-AVX512: Optimizes code for Xeon SKX (Skylake Server)

• -axMIC-AVX512 or –axCORE-AVX512

– Two versions: baseline and another optimized for KNL or Xeon SKX

– ‘baseline’: governed by implied –x flag, default sse2

• -axMIC-AVX512,CORE-AVX512

– Three versions: baseline, KNL optimized, Xeon SKX optimized

• -xCOMMON-AVX512

– Generates instructions that run on KNL and Xeon SKX

– Libraries may use KNL/Xeon SKX specific instructions but will be cpu
dispatched

– Possible performance loss but has advantage of one binary that runs
on KNL and Xeon SKX

• -xCORE-AVX2: Optimizes code for HSW

• –mmic: Generate code for KNC

Opt-report: Main Compiler Flags of Interest

• -opt-report[=N]

– Default level is N=2

• -opt-report-phase=<vec,loop,openmp,ipo,…>

– Default is all, recommend to use this to get full picture

• -opt-report-file= stdout | stderr | filename

• -vec-report[N] -par-report[N] -openmp-report[N]

– Shorthand for the subset of –opt-report

– Use only when default report is too verbose

5

Optimization Report Phases

• The compiler reports optimizations from 9 phases:

6

– LOOP: Loop Nest Optimizations

– PAR: Auto-Parallelization

– VEC: Vectorization

– OPENMP: OpenMP

– OFFLOAD: Offload

– IPO: Interprocedural Optimizations

– PGO: Profile Guided Optimizations

– CG: Code Generation Optimizations

– TCOLLECT: Trace Analyzer Collection

LOOP/PAR/VEC share a unified loop structure, a hierarchical output, to display optimizations in

an integrated format.

• Selecting phases for compiler optimization reporting is highly

customizable to satisfy customers’ specific requirements.
– Single Phase Reporting:

• Compiler Option: -[Q]opt-report-phase=VEC

– Multiple Phase Reporting (use a comma separated list):

• Compiler Option: -[Q]opt-report-phase=VEC, OPENMP, IPO, LOOP

– Default is “ALL” phases and default reporting verbosity level is 2

• Want to encourage customers to use integrated HPO report instead of just -vec-report[n]

Optimization Report Levels

• The compiler’s optimization report have 5 verbosity levels.

– Specifying report verbosity level:

• Compiler Option: –[Q]opt-report=N where N = level of desired verbosity

• For each optimization phase, higher verbosity level indicates higher level of

detail reported.

• Each verbosity level is inclusive of lower levels.

– Example, VEC Phase Levels:

• Level 1: Reports when vectorization has occurred.

• Level 2: Adds diagnostics why vectorization did not occur.

• Level 3: Adds vectorization loop summary diagnostics.

• Level 4: Adds additional available vectorization support information.

• Level 5: Adds detailed data dependency information diagnostics.

– Each phase can support up to 5 levels

7

Vec/Par/Loop

• Loop Optimization report shows loop nest in hierarchical manner

– Every loop version created gets its own set of opt-messages (+ a

header in some cases)

– Each message has a unique id for easy “help” access

• Vectorization/Parallelization reports have unified look & feel with Loop

Optimization reports

• Caller/Callee info available as part of loop report

• 15.0 messages are more actionable – whenever possible

• Reports a message whenever compiler turns off optimizations when it

hits internal limits

– Optimization for this routine was skipped to constrain compile time. Consider

overriding limits (-qoverride-limits)

– compile time constraints prevent loop vectorization, consider –O3

8

Output

• Opt-report output goes to *.optrpt file by default,

no longer stderr

– Output files are always created from scratch (no

appending behavior)

• With “-g” (Linux) / ”-Zi” (Windows), ASM code

and OBJ code will have extra loop-info

– In non-debug mode, use option to embed loop-info -

opt-report-embed=T

– Text-mode output is more complete than loop-info

embedded in object file

– More on this in Vec/Par/Loop section

95/13/2015

Annotated Assembly Listings

.L11: # optimization report

LOOP WAS INTERCHANGED

loop was not vectorized: not inner loop

xorl %edi, %edi #38.3

movsd b.279.0.2(%rax,%rsi,8), %xmm0 #41.32

unpcklpd %xmm0, %xmm0 #41.32

LOE rax rcx rbx rsi rdi r12 r13 r14 r15 edx xmm0

..B1.11: # Preds ..B1.11 ..B1.10

..L12: # optimization report

LOOP WAS INTERCHANGED

LOOP WAS VECTORIZED

VECTORIZATION HAS UNALIGNED MEMORY REFERENCES

VECTORIZATION SPEEDUP COEFFECIENT 2.250000

movaps a.279.0.2(%rcx,%rdi,8), %xmm1 #41.22

movaps 16+a.279.0.2(%rcx,%rdi,8), %xmm2 #41.22

movaps 32+a.279.0.2(%rcx,%rdi,8), %xmm3 #41.22

movaps 48+a.279.0.2(%rcx,%rdi,8), %xmm4 #41.22

mulpd %xmm0, %xmm1 #41.32

mulpd %xmm0, %xmm2 #41.32

<…>

105/13/2015

L4:: ; optimization report
; PEELED LOOP FOR VECTORIZATION

$LN36:
$LN37:

vaddss xmm1, xmm0, DWORD PTR [r8+r10*4] ;4.5

snip snip snip

L5:: ; optimization report
; LOOP WAS VECTORIZED
; VECTORIZATION HAS UNALIGNED MEMORY REFERENCES
; VECTORIZATION SPEEDUP COEFFECIENT 8.398438

$LN46:
vaddps ymm1, ymm0, YMMWORD PTR [r8+r9*4] ;4.5

snip snip snip

L6:: ; optimization report
; LOOP WAS VECTORIZED
; REMAINDER LOOP FOR VECTORIATION
; VECTORIZATION HAS UNALIGNED MEMORY REFERENCES
; VECTORIZATION SPEEDUP COEFFECIENT 2.449219

$LN78:
add r10, 4 ;3.3

snip snip snip

L7:: ; optimization report
; REMAINDER LOOP FOR VECTORIATION

$LN93:
inc rax ;3.3

• Asm listing produced

with “–S –g”

Vec Analysis - Utilizing Full vectors
• Typical vectorized loop consists of:

• Peel loop - generated as an optimization for aligning some
accesses

• Vector kernel loop - Highest performing, best if all vector
execution happen here

• Remainder loop - required for correctness unless compiler
can prove trip-count is multiple of vec-length

• Peel loop and remainder loops are (most likely) vectorized
by compiler – less efficiency

• Any unrolling of kernel vector loop also affects max
iterations in remainder

• Most loads/stores become masked

• Larger vector register means more iterations in
peel/remainder – in degenerate cases, all execution will
happen in peel/remainder loops significantly reducing
benefits from vectorizing loop

11

Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.
12

Utilizing Full Vectors – Simple Example1

Scellrb5% cat -n t10.c

1 #include <stdio.h>

2

3 void foo1(float * restrict a, float *b, float *c, int n)

4 {

5 int i;

6 for (i=0; i<n; i++) {

7 a[i] += b[i] * c[i];

8 }

9 }

10

scellrb5%:icc -O2 -opt-report4 -opt-report-file=stderr t10.c -restrict -c -
mmic

Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.
13

Example1 Pseudo Code

Peel loop until A is aligned

if (B is aligned)

for () { // Kernel vectorized loop1, unrolled by 2

[al64] A = [al64] A + [al64] B * C

[al64] A = [al64] A + [al64] B * C

else

for () { // Alternate alignment kernel loop2, unrolled by 2

[al64] A = [al64] A + B * C

[al64] A = [al64] A + [al64] B * C

}

endif

Remainder loop to execute remaining iterations

Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.
14

Peel Loop Report – Example1

Report from: Loop nest, Vector & Auto-parallelization optimizations [loop,
vec, par]

LOOP BEGIN at t10.c(6,3)

<Peeled>

remark #15389: vectorization support: reference a has unaligned access
[t10.c(7,5)]

remark #15389: vectorization support: reference a has unaligned access
[t10.c(7,5)]

remark #15389: vectorization support: reference b has unaligned access
[t10.c(7,5)]

remark #15389: vectorization support: reference c has unaligned access
[t10.c(7,5)]

remark #15381: vectorization support: unaligned access used inside
loop body

remark #15301: PEEL LOOP WAS VECTORIZED

LOOP END

Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.
15

Kernel Loop Report – Example1
LOOP BEGIN at t10.c(6,3)

remark #15388: vectorization support: reference a has aligned access
[t10.c(7,5)]

remark #15388: vectorization support: reference a has aligned access
[t10.c(7,5)]

remark #15389: vectorization support: reference b has aligned access
[t10.c(7,5)]

remark #15388: vectorization support: reference c has unaligned access
[t10.c(7,5)]

remark #15381: vectorization support: unaligned access used inside loop body

remark #15399: vectorization support: unroll factor set to 2

remark #15300: LOOP WAS VECTORIZED

remark #15450: unmasked unaligned unit stride loads: 1

remark #15475: --- begin vector loop cost summary ---

remark #15476: scalar loop cost: 15

remark #15477: vector loop cost: 1.120

remark #15478: estimated potential speedup: 20.270

remark #15488: --- end vector loop cost summary ---

LOOP END

LOOP BEGIN at t10.c(6,3)

<Alternate Alignment Vectorized Loop>

LOOP END

Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.
16

Remainder Loop Report – Example1
LOOP BEGIN at t10.c(6,3)

<Remainder>

remark #15388: vectorization support: reference a has aligned access
[t10.c(7,5)]

remark #15388: vectorization support: reference a has aligned access
[t10.c(7,5)]

remark #15389: vectorization support: reference b has unaligned access
[t10.c(7,5)]

remark #15389: vectorization support: reference c has unaligned access
[t10.c(7,5)]

remark #15388: vectorization support: reference a has aligned access
[t10.c(7,5)]

remark #15388: vectorization support: reference a has aligned access
[t10.c(7,5)]

remark #15389: vectorization support: reference b has unaligned access
[t10.c(7,5)]

remark #15389: vectorization support: reference c has unaligned access
[t10.c(7,5)]

remark #15381: vectorization support: unaligned access used inside
loop body

remark #15301: REMAINDER LOOP WAS VECTORIZED

LOOP END

Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.
17

Utilizing Full Vectors – What you can do
• If hotspot analysis on performance tool shows lot of time spent in peel or

remainder loops, this may be worth looking into

• Happens often when trip-count is unknown to compiler (say, n1) – but actual
value at runtime is small

• Choose algorithm blocking parameters to have high trip-counts for kernel
loops (relative to any peel/remainder loops)

• Align arrays – no need for peel loop

• Use loop_count pragma to convey information to compiler

• Especially useful for low trip-count loops for compiler to make better decisions

• Several controls available:

• #pragma nounroll (to disable unroll of vector kernel loops)

• #pragma vector noremainder (to disable vectorization of peel/remainder loops)

• #pragma vector unaligned (don’t generate peel loop)

• #pragma novector (disable vectorization altogether)

• Use –opt-assume-safe-padding if possible (specific to KNC)

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Tips for Low Trip-count Loops

• Ideal for compiler if trip-count and array extents are statically known

• Such as a Fortran “parameter” (#define in C)

• Vectorization cost-model decisions are easier for compiler – whether or not to
peel, unroll-factor, …

• Compiler analysis of alignment for vectorization is much more effective

• Prefetch distances chosen by the compiler are more effective

• Compiler is able to do outer-loop optimizations much more efficiently

– PRE (partial redundancy elimination) for address calculations

– Unroll of outer-loop

– PDSE (partial dead store elimination) in outer-loop, etc.

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Tips for Low Tripcount Loops - 2

• If trip-count and array extents are variables, it may be possible in
some cases to make a specialized version via src-changes

• In cases where they will remain as variables, you can help the
compiler:

• Use loop_count pragma/directive to convey min/max/avg values

• Can also use options such as –unroll0

• Use alignment clauses per loop or per array

• Use prefetch distance option to fine-tune

• In some cases, applying !dir$ simd on the outer-loop may be better

• Study the opt-report to make sure compiler is making reasonable
optimization decisions

Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.
20

Blocking Example - NBody
for (body1=0; body1<NBODIES; body1++){

for (body2=0; body2<NBODIES; body2++) {
OUT[body1] += compute(body1, body2);

}
}

• data (body2) is streamed from memory. Assuming

NBODIES is large, we would have no reuse in cache

=> this application is memory bandwidth bound (app

will run at the speed of memory to cpu speeds, less

than optimal)

Modified Source Pseudo-code (with 1-D blocking):

for (body2=0; body2 <NBODIES; body2 +=BLOCK) {
for (body1=0; body1 < NBODIES; body1 ++) {

for (body22=0; body22 < BLOCK; body22 ++) {
OUT[body1] += compute(body1,

body2 + body22);
}

}
}

• data (body22) is kept and reused in cache => better
performance

// Full source code

#define CHUNK_SIZE 8192

#pragma omp parallel private(body_start_index)

for(body_start_index=0; body_start_index<global_number_of_bodies;

body_start_index += CHUNK_SIZE) {

int i, body_end_index = body_start_index + CHUNK_SIZE;

#pragma omp for private(i) schedule(guided)

#pragma unroll_and_jam (4) // unroll-jam done by compiler

for(i=0; i<global_number_of_bodies; i++) {

int j;

TYPE acc_x_0 = 0, acc_y_0 = 0, acc_z_0 = 0;

for(j=body_start_index; j<body_end_index; j+=1){

TYPE delta_x_0 = Input_Position_X[(j+0)] - Input_Position_X[i];

TYPE delta_y_0 = Input_Position_Y[(j+0)] - Input_Position_Y[i];

TYPE delta_z_0 = Input_Position_Z[(j+0)] - Input_Position_Z[i];

TYPE gamma_0 = delta_x_0*delta_x_0 +

delta_y_0*delta_y_0 + delta_z_0*delta_z_0 + epsilon_sqr;

TYPE s_0 = Mass[j+0]/(gamma_0 * SQRT(gamma_0));

acc_x_0 += s_0*delta_x_0;

acc_y_0 += s_0*delta_y_0;

acc_z_0 += s_0*delta_z_0;

}

Output_Acceleration[3*(i+0)+0] += acc_x_0;

Output_Acceleration[3*(i+0)+1] += acc_y_0;

Output_Acceleration[3*(i+0)+2] += acc_z_0;

}

}

Data Dependence - Multiversioning
• scellrb5% cat -n t8.c

• 1 #include <stdio.h>

• 2

• 3 void foo1(float *a, float *b, float *c, int n)

• 4 {

• 5 int i;

• 6 #pragma vector aligned nontemporal

• 7 for (i=0; i<n; i++) {

• 8 a[i] *= b[i] + c[i];

• 9 }

• 10 }

• scellrb5%: icc -O2 -opt-report4 -opt-report-file=stderr t8.c -restrict -c -xmic-avx512

21

Loop Report – Multiversioning for vec
• LOOP BEGIN at t8.c(7,3)

• <Multiversioned v1>

• remark #25228: Loop multiversioned for Data Dependence

• remark #15388: vectorization support: reference a has aligned access [t8.c(8,5)] …

• remark #15412: vectorization support: streaming store was generated for a [t8.c(8,5)]

• remark #15300: LOOP WAS VECTORIZED

• remark #15448: unmasked aligned unit stride loads: 3

• remark #15449: unmasked aligned unit stride stores: 1

• remark #15467: unmasked aligned streaming stores: 1

• remark #15475: --- begin vector loop cost summary ---

• remark #15476: scalar loop cost: 15

• remark #15477: vector loop cost: 0.430

• remark #15478: estimated potential speedup: 32.140

• remark #15488: --- end vector loop cost summary ---

• LOOP END

• LOOP BEGIN at t8.c(7,3)

• <Remainder, Multiversioned v1>

• remark #15388: vectorization support: reference a has aligned access [t8.c(8,5)] …

• remark #15301: REMAINDER LOOP WAS VECTORIZED

• LOOP END

• LOOP BEGIN at t8.c(7,3)

• <Multiversioned v2>

• remark #15304: loop was not vectorized: non-vectorizable loop instance from multiversioning

• remark #25439: unrolled with remainder by 2

• LOOP END

22

Software & Services Group

Copyright© 2013, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Avoid Manual Unrolling in Source

• Simple legacy DAXPY Fortran

code: (Y = A*X + Y on DP vectors)
m = MOD(N,4)

if (m /= 0) THEN

do i = 1 , m

Dy(i) = Dy(i) + Da*Dx(i)

end do

if (N < 4) RETURN

end if

mp1 = m + 1

do i = mp1 , N , 4

Dy(i) = Dy(i) + Da*Dx(i)

Dy(i+1) = Dy(i+1) + Da*Dx(i+1)

Dy(i+2) = Dy(i+2) + Da*Dx(i+2)

Dy(i+3) = Dy(i+3) + Da*Dx(i+3)

end do

• Rewriting in a simplest

possible way helps:

– Unit-stride accesses

– Alignable manually or using

peeling and multiversioning

– Optimizable for all platforms

– Much more readable

do i=1,N

Dy(i) = Dy(i) + Da*Dx(i)

end do

23

• Try not to use manual unroll: keep code simple

– Common in legacy Fortran codes

Less than 4

iterations loop

Non-unit

accesses

everywhere

Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.
24

Loop Interchange-Locality&Vectorization
scellrb5% cat –n d2.F90

#define np 16

149 subroutine orig(div)

150 real*8, dimension (np,np), intent(inout) :: div

151 integer :: i, j, l, k, n, m

152 do j=1,np

153 do i=1,np

154 vtemp(i,j,1)=(Dinv(1,1,i,j)*v(i,j,1) + Dinv(1,2,i,j)*v(i,j,2))

155 vtemp(i,j,2)=(Dinv(2,1,i,j)*v(i,j,1) + Dinv(2,2,i,j)*v(i,j,2))

156 enddo

157 enddo

159 do n=1,np

160 do m=1,np

162 div(m,n)=0

163 do j=1,np

164 div(m,n)=div(m,n)-(spheremp(j,n)*vtemp(j,n,1)*Dvv(m,j) &

165 + spheremp(m,j)*vtemp(m,j,2)*Dvv(n,j)) &

166 * rrearth

167 enddo

168 end do

169 end do

170 end subroutine orig

scellrb5%: ifort -O3 -xAVX –c -i_keep -qopt-report4 d2.F90

Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.
25

Loop Report – Distribution+Interchange

LOOP BEGIN at d2.F90(165,30)

<Distributed chunk1>

remark #25426: Loop Distributed (2 way)

remark #15541: outer loop was not auto-vectorized: consider using SIMD
directive [d2.F90(162,11)]

LOOP BEGIN at d2.F90(160,8)

<Distributed chunk1>

remark #25426: Loop Distributed (2 way)

remark #25408: memset generated

remark #15398: loop was not vectorized: loop was transformed to memset or
memcpy

LOOP END

LOOP END

Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.
26

Loop Report–Distribution+Interchange(2)
LOOP BEGIN at d2.F90(165,30)

<Distributed chunk2>

remark #25444: Loopnest Interchanged: (1 2 3) --> (1 3 2)

remark #15542: loop was not vectorized: inner loop was already vectorized

LOOP BEGIN at d2.F90(163,11)

<Distributed chunk2>

remark #15542: loop was not vectorized: inner loop was already vectorized

LOOP BEGIN at d2.F90(160,8)

remark #15389: vectorization support: reference div has unaligned access [d2.F90(164,14)]

remark #15389: vectorization support: reference div has unaligned access [d2.F90(164,14)]

remark #15389: vectorization support: reference divspherewk_mp_dvv_ has unaligned access
[d2.F90(164,14)]

remark #15389: vectorization support: reference divspherewk_mp_spheremp_ has unaligned access
[d2.F90(164,14)]

remark #15389: vectorization support: reference divspherewk_mp_vtemp_ has unaligned access
[d2.F90(164,14)]

remark #15381: vectorization support: unaligned access used inside loop body

remark #15301: PERMUTED LOOP WAS VECTORIZED

remark #15450: unmasked unaligned unit stride loads: 4

remark #15451: unmasked unaligned unit stride stores: 1

remark #15475: --- begin vector loop cost summary ---

remark #15476: scalar loop cost: 22

remark #15477: vector loop cost: 11.750

remark #15478: estimated potential speedup: 1.660

remark #15488: --- end vector loop cost summary ---

remark #25015: Estimate of max trip count of loop=4

LOOP END

LOOP END

LOOP END

Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.
27

Make Loop Induction Variables Local
scellrb5% cat –n d1.F90

Module divSphereWk

real*8, Dimension(:,:,:), Allocatable :: v …

integer :: i, j, l, k, n, m // Global loop induction variables – bad idea

public

Contains

149 subroutine orig(div)

150 real*8, dimension (np,np), intent(inout) :: div

159 do n=1,np

160 do m=1,np

162 div(m,n)=0

163 do j=1,np

164 div(m,n)=div(m,n)-(spheremp(j,n)*vtemp(j,n,1)*Dvv(m,j) &

165 + spheremp(m,j)*vtemp(m,j,2)*Dvv(n,j)) &

166 * rrearth

167 enddo

168 end do

169 end do

170 end subroutine orig

scellrb5%: ifort -O3 -xAVX –c -i_keep -qopt-report4 d1.F90

• Global induction variables create imperfect nesting – affects loop opts

remark #25096: Loop Interchange not done due to: Imperfect Loop Nest
(Either at Source or due to other Compiler Transformations)

28

Example of

matmul ‘C’

for j=1,1000 // Original loopnest

for i = 1,1000

a[j][i] = 0.0

for k = 1,1000

a[j][i] = a[j][i] + b[k][i] *c[j][k];

end for

end for

end for

// Transformed Loopnest pseudo-code

for j = 1, 1000

for i = 1, 1000

a[j][i] = 0.0 // This 2-level loopnest will be

// converted to a call to memcpy

end for

end for

// outer three-level loop-blocking not shown

for j=1,1000,4 // unroll-jam by 4

for k = 1,1000,4 // unroll-jam by 4

for i = 1,1000 // this loop will be vectorized

a[j][i] = a[j][i] + b[k][i] * c[j][k];

a[j][i] = a[j][i] + b[k+1][i] * c[j][k+1];

a[j][i] = a[j][i] + b[k+2][i] * c[j][k+2];

a[j][i] = a[j][i] + b[k+3][i] * c[j][k+3];

a[j+1][i] = a[j+1][i] + b[k][i] * c[j+1][k];

a[j+1][i] = a[j+1][i] + b[k+1][i] * c[j+1][k+1];

a[j+1][i] = a[j+1][i] + b[k+2][i] * c[j+1][k+2];

a[j+1][i] = a[j+1][i] + b[k+3][i] * c[j+1][k+3];

a[j+2][i] = a[t2+1][i] + b[k][i] * c[j+2][k];

...

a[j+3][i] = a[j+3][i] + b[k][i] * c[j+3][k];

...

end for

end for

end for

Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.
29

Loop Blocking and Unroll-Jam
scellrb5% cat -n m4_single.f

1 program main

2 parameter (n=2048)

3 double precision , dimension(n,n) :: a,b,c,ctest

4 integer i,j,k, nerr

5 double precision t,s, temp,freq

6 real (selected_real_kind(14)) :: t2,t1,TIME,FLOPS,t_call

7 freq = 2.67

8 fopspercycle = 4

9 print*, " Frequency of processor in Ghz ",freq

10 print*, " fp ops per cycle ",fopspercycle

11

12 do j=1,n

13 do i = 1,n

14 c(i,j) = 0

15 do k = 1,n

16 c(i,j) = c(i,j) + a(i,k) * b(k,j)

17 enddo

18 enddo

19 enddo

21 print *, a,b,c

22 end

scellrb5%: ifort -O3 -qopt-report2 -qopt-report-file=stderr m4_single.f -
xmic-avx512

Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.
30

Loop Report–Distn+Blocking+Unroll-jam

LOOP BEGIN at m4_single.f(12,9)

<Distributed chunk1>

remark #25426: Loop Distributed (2 way)

remark #25420: Collapsed with loop at line 13

remark #25408: memset generated

remark #15398: loop was not vectorized: loop was transformed to memset or
memcpy

LOOP BEGIN at m4_single.f(13,12)

<Distributed chunk1>

remark #25426: Loop Distributed (2 way)

remark #25421: Loop eliminated in Collapsing

LOOP END

LOOP END

Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.
31

Distn+Blocking+Unroll-jam (2)
LOOP BEGIN at m4_single.f(12,9)

<Distributed chunk2>

remark #25444: Loopnest Interchanged: (1 2 3) --> (1 3 2)

remark #15542: loop was not vectorized: inner loop was already vectorized

LOOP BEGIN at m4_single.f(12,9)

<Distributed chunk2>

remark #15542: loop was not vectorized: inner loop was already vectorized

LOOP BEGIN at m4_single.f(12,9)

remark #15542: loop was not vectorized: inner loop was already vectorized

LOOP BEGIN at m4_single.f(12,9)

<Distributed chunk2>

remark #25442: blocked by 128 (pre-vector)

remark #25440: unrolled and jammed by 4 (pre-vector)

remark #15542: loop was not vectorized: inner loop was already vectorized

LOOP BEGIN at m4_single.f(15,15)

<Distributed chunk2>

remark #25442: blocked by 128 (pre-vector)

remark #25440: unrolled and jammed by 4 (pre-vector)

remark #15542: loop was not vectorized: inner loop was already vectorized

LOOP BEGIN at m4_single.f(13,12)

remark #25442: blocked by 128 (pre-vector)

remark #15301: PERMUTED LOOP WAS VECTORIZED

remark #25456: Number of Array Refs Scalar Replaced In Loop: 36

LOOP END

LOOP END

Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.
32

Distn+Blocking+Unroll-jam (3)
LOOP BEGIN at m4_single.f(15,15)

<Remainder, Distributed chunk2>

remark #15542: loop was not vectorized: inner loop was already vectorized

LOOP BEGIN at m4_single.f(13,12)

remark #15301: PERMUTED LOOP WAS VECTORIZED

remark #25456: Number of Array Refs Scalar Replaced In Loop: 3

LOOP END

LOOP END

LOOP END

LOOP BEGIN at m4_single.f(12,9)

<Remainder, Distributed chunk2>

remark #15542: loop was not vectorized: inner loop was already vectorized

LOOP BEGIN at m4_single.f(15,15)

<Distributed chunk2>

remark #15542: loop was not vectorized: inner loop was already vectorized

LOOP BEGIN at m4_single.f(13,12)

remark #15301: PERMUTED LOOP WAS VECTORIZED

LOOP END

LOOP END

LOOP END

LOOP END

LOOP END

LOOP END

Pragmas to Fine-tune Loop Opts
• Sampling of loop-level controls available

• Also useful to suppress particular loop transformations – useful for performance
experiments

• If turning off a particular loop opt hurts, there may be opportunity to fine-tune the
parameter

• #pragma simd reduction(+:sum)

• The loop is transformed as is, no other loop-optimizations will change the simd-
loop

• #pragma loop_count min(220) avg (300) max (380)
– Fortran syntax: !dir$ loop count(16)

• #pragma vector aligned nontemporal

– #pragma novector // to suppress vectorization

• #pragma unroll(4)

– #pragma unroll(0) // to suppress loop unrolling

• #pragma unroll_and_jam(2)

• #pragma nofusion

• #pragma distribute_point

– If placed right after the for-loop, distribution will be suppressed for that loop

– Fortran syntax: !dir$ distribute point

• #pragma forceinline (recursive)

33

Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.
34

Fortran – Unit-Stride is Important
• Fortran language semantics allow unit-stride vectorization for lots of array

types such as allocatable arrays, adjustable arrays, explicit arrays, assumed-
size arrays, etc.

• Still requires vector-loop index to be in the last dimension

• Using F90 array notation can help in cases where it is not

• F90 pointers and assumed-shape arrays get strided access (language
semantics)

• Compiler does versioning for unit-strides, but this is an optimization and
may not help all cases

• Using Fortran 2008 CONTIGUOUS attribute may help

Original src:

Do index=1,n

A(I,j,k,index) = B(I,j,k,index) +

C(I,j,k,index) * D

enddo

• Non-unit stride vectorization, since

index is not in the innermost

dimension

• Results in gathers/scatters

Modified src:

Do index=1,n

A(I:I+VLEN,j,k,index) = B(I:I+VLEN,j,k,index) +

C(I:I+VLEN,j,k,index) * D

Enddo

• Use of F90 array notation helps here to vectorize

with unit-stride

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

• Use multi-dimensional arrays carefully to get full-VL unit-strided
vectorization for most loops

do k=2,kbu
mi = mi0 + k
f1 = mhdtddy*max(v(mi),zero)
tmp(1:nc,k) = (t(1:nc,mi) + f1*(t(1:nc,mi)))
htmp(k) = mhdtddy*onethird*dt/h_new(mi)

enddo

• nc value is 2 or 12 - if source-code can be transformed to:

!dir$ simd // Better to vectorize at outer-level with transformation below

do k=2,kbu
mi = mi0 + k
f1 = mhdtddy*max(v(mi),zero)
tmp(k,1:nc) = (t(mi,1:nc) + f1*(t(mi,1:nc)))
htmp(k) = mhdtddy*onethird*dt/h_new(mi)

enddo

– Unit-strided vectorization by vectorizing outer-loop

– If nc is constant and small, compiler will do complete unroll of inner-loop
before vectorization (based on simd pragma on outer loop)

– Useful even when nc is a variable unknown to compiler

5/13/2015

35

Refactor for Efficient Unit-stride Vectors

Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.
36

Vectorization with Indirect Accesses
for (i = kstart; i < kend; ++i) {

istart = iend;
iend = mp_dofStart[i+1];
float w = xd[i];

for (j = istart; j < iend; ++j) {
index = SCS[j];
xd[index] -= lower[j]*w;

}
}

• Key pre-requisite to vectorization is that the xd values are distinct

• Otherwise, there are genuine dependences that will make the loop NOT
vectorizable (without advanced instructions such as vconflict)

• If that is the case, the only alternative is to rewrite the algorithm in a vector-
friendly way

• If the xd values are guaranteed (by the user) to be distinct, then one can use the
ivdep/simd pragmas (before the inner j-loop) to vectorize

• The compiler will still generate gather/scatter vectorization

• If there is an alternative algorithmic formulation where unit-strides can be used, that may
be beneficial

Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.
37

Vectorization with indirect access - contd

Whether gather/scatter helps (compared to scalar) will depend on:

• Whether there is any cache-locality for the indirect accesses – KNC hardware will be
able to combine them if they happen to be in the same cache-line

• Whether all the data is in cache (as opposed to memory)

• If they are getting accessed from memory, doing prefetching using intrinsics for the
gather/scatter may help depending on the memory access pattern

• Doing vectorization (or not) may not matter since your bottleneck is the memory access.

• Amount of other “vectorizable computation” inside the loop

• Example in previous slide has only a simple fma, so not much to gain from vectorizing the
“other” part.

38

Motivation for Conflict Detection

• Sparse computations are common in HPC, but hard to

vectorize due to race conditions

• Consider the “histogram” problem:

index = vload &B[i] // Load 16 B[i]
old_val = vgather A, index // Grab A[B[i]]
new_val = vadd old_val, +1.0 // Compute new values
vscatter A, index, new_val // Update A[B[i]]

for(i=0; i<16; i++) { A[B[i]]++;}

• Code above is wrong if any values within B[i] are duplicated

− Only one update from the repeated index would be registered!

• A solution to the problem would be to avoid executing the sequence gather-op-scatter

with vector of indexes that contain conflicts

39

Conflict Detection Instructions Usage

• VPCONFLICT instruction detects elements

with previous conflicts in a vector of indexes

– Allows to generate a mask with a subset of

elements that are guaranteed to be conflict

free

– The computation loop can be re-executed with

the remaining elements until all the indexes

have been operated upon

index = vload &B[i] // Load 16 B[i]
pending_elem = 0xFFFF; // all still
remaining
do {

curr_elem = get_conflict_free_subset(index, pending_elem)
old_val = vgather {curr_elem} A, index // Grab A[B[i]]
new_val = vadd old_val, +1.0 // Compute new

values
vscatter A {curr_elem}, index, new_val // Update A[B[i]]
pending_elem = pending_elem ^ curr_elem // remove done idx

} while (pending_elem)

VCONFLICT instr.
VPCONFLICT{D,Q} zmm1{k1},
zmm2/mem

VPBROADCASTM{W2D,B2Q} zmm1, k2

VPTESTNM{D,Q} k2{k1}, zmm2,
zmm3/mem

VPLZCNT{D,Q} zmm1 {k1}, zmm2/mem

40
40

Report for vectorization using vconflict
LOOP BEGIN at t1.c(11,5)

remark #15389: vectorization support: reference SCS has unaligned access [t1.c(12,7)]

remark #15389: vectorization support: reference lower has unaligned access [t1.c(13,7)]

remark #15381: vectorization support: unaligned access used inside loop body

remark #15416: vectorization support: scatter was generated for the variable xd: indirect access [t1.c(13,7)]

remark #15415: vectorization support: gather was generated for the variable xd: indirect access [t1.c(13,7)]

remark #15305: vectorization support: vector length 16

remark #15300: LOOP WAS VECTORIZED

remark #15442: entire loop may be executed in remainder

remark #15450: unmasked unaligned unit stride loads: 2

remark #15458: masked indexed (or gather) loads: 1

remark #15459: masked indexed (or scatter) stores: 1

remark #15475: --- begin vector loop cost summary ---

remark #15476: scalar loop cost: 20

remark #15477: vector loop cost: 5.060

remark #15478: estimated potential speedup: 3.490

remark #15488: --- end vector loop cost summary ---

remark #15499: histogram: 2

LOOP BEGIN at t1.c(13,7)

remark #25460: No loop optimizations reported

LOOP END

LOOP END

41

Inner-level vs. Outer-level Vectorization
When to consider outer-loop vectorization:
• If the average inner-loop trip-counts are low (not enough

to fill up a full vector) and the outer-loop trip-counts are
large, then you may get better vectorization-efficiency.

• Are there any expensive operations in the outer-loop (say
a divide) that now get vectorized due to outer-loop
vectorization?

• Unit-stride vs. gathers/scatters will change for inner vs.
outer vectorization

• Potential gains have to be weighed taking any loss of
unit-stride efficient vectorization compared to inner-loop
vectorization

42

How to do Outer-level Vectorization
• Compiler may be able to vectorize a subset of these cases by

adding the simd pragma (with the right clauses) to the outer-loop

• Directly vectorize at outer loop level by outlining the body of the
outer-loop into a vector-elemental function and using the simd
pragma

• Strip-mine outer loop iterations and change each statement in the
loop body to operate on the strip

– Intel® Cilk™ Plus array notation extension helps the
programmers to express this approach in a natural fashion

43

Outer-level Vectorization by outlining
outer-loop body into elemental function
Sparse-matrix-vector loop-pattern:

for(int row=ib*BLOCKSIZE; row<top;

++row) {

local_y[row]=0.0;

for(int i=Arowoffsets[row];

i<Arowoffsets[row+1]; ++i) {

local_y[row] +=

Acoefs[i]*local_x[Acols[i]];

}

}

• Inner-loop vectorization gives:

• unit-stride load for "Acoefs" and

"Acols", and gathers for "local_x“

• "local_y" storage accesses get moved

out of the loop and a reduction-temp will

be introduced by the compiler

•Wrong to use simd pragma without

reduction clause

#pragma simd

for(LocalOrdinalType row=ib*BLOCKSIZE; row<top; ++row)

{

local_y[row]=0.0;

Inner_loop_elem_function(local_y, row, Acoefs, local_x,

Acols, Arowoffsets);

}

__declspec(vector(uniform(Arowoffsets, Acoefs, local_x,

Acols, local_y), linear(row))))

Inner_loop_elem_function(float *local_y, int row,

float *Acoefs, float *local_x, int *Acols, int *Arowoffsets)

{

for(int i=Arowoffsets[row]; i<Arowoffsets[row+1]; ++i) {

local_y[row] += Acoefs[i]*local_x[Acols[i]];

}

}

•Outer-loop vectorization gives:

• For the inner-loop-body the compiler will generate unit-

stride load/store for "local_y“

• "Acoefs" and "Acols" loads become gather

• "local_x" continues to be gather.

Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.
44

Prefetch Directive Support

Prefetch pragma support for C loops

• Apply uniform distance for all arrays in a loop:

– #pragma prefetch *:hint:distance

• Fine-grained control for each array:

– #pragma prefetch var:hint:distance

– #pragma noprefetch var

• You can combine the two forms for the same loop
#pragma prefetch *:1:5
#pragma noprefetch A // prefetch only for B and C arrays

for(int i=0; i<n; i++) { C[i] = A[B[i]]; }

Prefetch directive support for Fortran loops

• Apply uniform distance for all arrays in a loop:

– CDEC$ prefetch *:hint:distance

• Fine-grained control for each array:

– CDEC$ prefetch var:hint:distance

– CDEC$ noprefetch var

Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.
45

Prefetch Distance Tuning Option
-opt-prefetch-distance=n1[,n2]

• n1 specifies the distance for first-level prefetches into L2

• n2 specifies prefetch distance for second-level prefetches from L2
to L1 (use n2 <= n1)

• -opt-prefetch-distance=64,32

• -opt-prefetch-distance=24

– Use first-level distance=24, second-level distance to be
determined by compiler

• -opt-prefetch-distance=0,4

– Turns off all first-level prefetches, second-level uses distance=4
(Use this if you want to rely on hardware prefetching to L2, and
compiler prefetching from L2 to L1)

• -opt-prefetch-distance=16,0

– First-level distance=16, no second-level prefetches issued

• If option not specified, all distances determined by compiler

Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.
46

Prefetch Performance Tuning
If algorithm is well blocked to fit in L2 cache, prefetching is less

critical

For data access patterns where L2-cache misses are common ,
prefetching is critical

• Default compiler heuristics typically use a first-level prefetch
distance of <=8 vectorized iterations

• For bandwidth-bound benchmarks (such as stream), using a
larger first-level prefetch (vprefetch1) distance sometimes
shows performance improvements

• If you see a performance drop when you turn off compiler-
prefetching, the app is a likely candidate that will benefit from
fine-tuning of compiler prefetches with options/pragmas

Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.
47

Prefetch Performance Tuning - Contd
Use different first-level (vprefetch1) and second-level prefetch

(vprefetch0) distances to fine-tune your application performance

• -opt-prefetch-distance=n1[,n2]

• Useful values to try for n1: 0,4,8,16,32,64

• Useful values to try for n2: 0,1,2,4,8

• Can also use prefetch pragmas to do this on a per-loop basis

• Try –mP2OPT_hpo_pref_initial_vals=100 <large_value>

If your application hot-spots use indirect accesses (gather/scatter) or
non-unit-strided accesses, then try enhanced compiler prefetching
for such references (described more in later slides)

• Use appropriate pragma for each such loop OR

• Add option –mP2OPT_hlo_pref_indirect_refs=T

• Add option –mP2OPT_hlo_pref_multiple_pfes_strided_refs=T

Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

C++ Example Using Lambda Function

typedef double* __restrict__ __attribute__((align_value (64))) Real_ptr;

typedef int Indx_type;

template <typename LOOP_BODY>

inline __attribute__((always_inline))

void forall(Indx_type begin, Indx_type end, LOOP_BODY loop_body)

{

#pragma simd

#pragma vector aligned

#pragma prefetch *:1:25

#pragma prefetch *:0:2

for (Indx_type ii = begin ; ii < end ; ++ii) { loop_body(ii); }

}

void foo8(Indx_type len, Real_ptr out1, Real_ptr out2, Real_ptr out3,

Real_ptr in1, Real_ptr in2)

{

forall(0, len, [&] (Indx_type i) {

out1[i] = in1[i] * in2[i] ;

out2[i] = in1[i] + in2[i] ;

out3[i] = in1[i] - in2[i] ;

}) ;

}
48

Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

C++ Ex. Using Lambda - Contd

49

• Prefetch pragma using the * syntax to control all arrays inside the loop

• Command-line uses –unroll0 option for illustrative purposes only

• In general, all unrolled cache-lines are prefetched irrespective of the
unroll factor chosen by the compiler for the vectorized loop

• 5 arrays, 2 prefetches per array, 10 cache-lines prefetched inside the loop

• First-level prefetch distance =25 vectorized loop-iterations ahead

$ icpc -c -qopt-report3 -qopt-report-phase=loop,vec star_pf7.cpp -
std=c++0x -mmic -unroll0

LOOP BEGIN at star_pf7.cpp(12,4) inlined into star_pf7.cpp(17,4)
remark #15301: SIMD LOOP WAS VECTORIZED

…
remark #25018: Total number of lines prefetched in=10
remark #25021: Number of initial-value prefetches=6
remark #25035: Number of pointer data prefetches=10, dist=8
remark #25149: Using directive-based hint=1, distance=25 for pointer

data reference [star_pf7.cpp(18,21)]
remark #25141: Using second-level distance 2 for prefetching pointer

data reference [star_pf7.cpp(18,21)]
…

Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Loop Prefetch Example2
for(int y = y0; y < y1; ++y) {

float div, *restrict A_cur = &A[t & 1][z * Nxy + y * Nx];

float *restrict A_next = &A[(t + 1) & 1][z * Nxy + y * Nx];

float *restrict vvv = &vsq[z * Nxy + y * Nx];

for(int x = x0; x < x1; ++x) { // Typical trip-count is 192, 12 after vectorization

div = c0 * A_cur[x] + c1 * ((A_cur[x + 1] + A_cur[x - 1])

+ (A_cur[x + _Nx] + A_cur[x - _Nx])

+ (A_cur[x + Nxy] + A_cur[x - Nxy]))

+ c2 * ((A_cur[x + 2] + A_cur[x - 2]) + ...

A_next[x] = 2 * A_cur[x] - A_next[x] + vvv[x] * div;

}

}

50

$ icc -O2 -qopt-report3 -qopt-report-phase=loop,vec p3_orig.cpp
…
remark #15301: LOOP WAS VECTORIZED.
remark #25018: Total number of lines prefetched=38
remark #25035: Number of pointer data prefetches=38, dist=8
…

• Prefetch coverage is low (dist =8) since typical trip-count is only 12

• Use –opt-prefetch-distance=2,1 (Or add pragmas)

• Or use loop-count directive before inner-loop:#pragma loop_count (192)

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

51

Adjacent Gather/Scatter Optimization Variants

 Few basic forms (all unmasked)

 Strided loads and stores

 Array of Structs

 Fortran multi-dimensional arrays with last dimension completely unrolled

 C/C++ pointer-of-pointers with constant last dimension

 Support for indirect accesses – applications like miniMD

 Replace series of gathers with a series of vector loads of contiguous elements
followed by a sequence of permutations/shuffles in the register file

 Compiler Targeting Priorities

 Simple forms of this optimization enabled in 15.0 for KNC

 Targeting more cases in 16.0

 Optimization is enabled as part of default O2 optimization level

 User does not need to add any special options

525/13/2015

Opt-report Example – Adjacent Gather

1 #include <stdio.h>

2

3 extern float dataf[];

4 static float resf[];

5 extern double datad[];

6 static double resd[];

7

8 void adjacent_access_unoptimized()

9 {

10 int i = 0;

11

12 for (i = 0; i< 6200; ++i) {

13 float xij = dataf[4 * i];

14 float yij = dataf[4 * i + 1];

15 float zij = dataf[4 * i + 2];

16 float tij = dataf[4 * i + 3];

17 resf[i] = xij * xij + yij * yij + zij * zij + tij * tij;

18 }

19 }

20

21 void adjacent_access_optimized()
22 {
23 int i = 0;
24
25 for (i = 0; i< 6200; ++i) {
26 double xij = datad[3 * i];
27 double yij = datad[3 * i + 1];
28 double zij = datad[3 * i + 2];
29 resd[i] = xij * xij + yij * yij + zij * zij;
30 }
31 }
32

Compiled with:
icc -O2 -opt-report1 -opt-report-
file=stderr t1.c -c -mmic –opt-
report-phase=cg

CG Opt Report: Level 1

Features

Shows report for

optimization of sparse

memory accesses for

each routine
 Reports whether an optimized

instruction sequence is used for

the sparse memory access pattern

 Usage of an unoptimized is a

question for a compiler

improvement

 Compiler report may also say

“optimization unprofitable” (not

shown)

Example
Begin optimization report for: adjacent_access_unoptimized()

Report from: Code generation optimizations [cg]

t1.c(13,23):remark #34032: adjacent sparse (strided) loads are

not optimized. Details: stride { 16 }, types { F32-V512, F32-

V512, F32-V512, F32-V512 }, number of elements { 16 },

select mask { 0x00000000F }.

====================================

Begin optimization report for: adjacent_access_optimized()

Report from: Code generation optimizations [cg]

t1.c(26,24):remark #34030: adjacent sparse (strided) loads

optimized for speed. Details: stride { 24 }, types { F64-

V512, F64-V512, F64-V512 }, number of elements { 8 },

select mask { 0x000000007 }.

====================================

535/13/2015

CG Opt Report: KNC Assembly Snippet

• Unoptimized case:

..L12: vgatherdps 4+dataf(%r9,%zmm0,8), %zmm1{%k3} #13.23

jkzd ..L11, %k3 # Prob 50% #13.23

vgatherdps 4+dataf(%r9,%zmm0,8), %zmm1{%k3} #13.23

jknzd ..L12, %k3 # Prob 50% #13.23

..L11: …

..L14: vgatherdps dataf(%r9,%zmm0,8), %zmm3{%k4} #13.23

jkzd ..L13, %k4 # Prob 50% #13.23

vgatherdps dataf(%r9,%zmm0,8), %zmm3{%k4} #13.23

jknzd ..L14, %k4 # Prob 50% #13.23

..L13: …

..L16: vgatherdps 8+dataf(%r9,%zmm0,8), %zmm4{%k2} #13.23

jkzd ..L15, %k2 # Prob 50% #13.23

vgatherdps 8+dataf(%r9,%zmm0,8), %zmm4{%k2} #13.23

jknzd ..L16, %k2 # Prob 50% #13.23 …

..L15: …

..L18: vgatherdps 12+dataf(%r9,%zmm0,8), %zmm5{%k1} #13.23

jkzd ..L17, %k1 # Prob 50% #13.23

vgatherdps 12+dataf(%r9,%zmm0,8), %zmm5{%k1} #13.23

jknzd ..L18, %k1 # Prob 50% #13.23

..L17:

The four gather sequences remain in

generated code – code generator does not

create more efficient sequence

• Optimized case:

..B2.7: # Preds ..B2.7 ..B2.6 Latency 97

vloadunpackld datad(,%rdx,8), %zmm3 #26.24 c1

vloadunpackld 64+datad(,%rdx,8), %zmm7 #26.24 c5

vloadunpackld 128+datad(,%rdx,8), %zmm2 #26.24 c9

vloadunpackhd 64+datad(,%rdx,8), %zmm3 #26.24 c13

vloadunpackhd 128+datad(,%rdx,8), %zmm7 #26.24 c17

vloadunpackhd 192+datad(,%rdx,8), %zmm2 #26.24 c21

…

jb ..B2.7 # Prob 99% #25.7 c97

3-gather sequence converted by

compiler to a more efficient

sequence with 3 unaligned pair-

loads (shown above) + permutes

(not shown)

545/13/2015

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Coral Example–Strided Loads
• Vectorized using 3 adj-gather: optimized seq generated for AVX,AVX2,KNC,KNL,SKX

void foo(double* restrict min, __int32* restrict pos, const double (*in)[3], const
double* displ, const int limit){

int p = 0; double t = in[0][0] + displ[0]; double m = t*t;
t = in[0][1] + displ[1]; m += t*t;
t = in[0][2] + displ[2]; m += t*t;
for (int j = 1; j < limit; j++) {

double t = in[j][0] + displ[0]; double v = t*t;
t = in[j][1] + displ[1]; v += t*t;
t = in[j][2] + displ[2]; v += t*t;
if (v < m){ m = v; p = j; }

}
*min = m; *pos = p;

} // icc -O3 –xMIC-AVX512 -restrict -opt-report3 coral_qmcpack.cpp –c

Report from: Code generation optimizations [cg]
coral_qmcpack.cpp(11,28):remark #34030: adjacent sparse (strided) loads optimized

for speed. Details: stride { 24 }, types { F64-V512, F64-V512, F64-V512 }, number
of elements { 8 }, select mask { 0x000000007 }

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Adjacent Gather/Scatter Optimization for AOS

• Current compiler can successfully detect a
series of adjacent gathers/scatters that get
generated due to accesses to multiple
adjacent structure members and can
optimize away the gathers/scatters.

• Optimized sequence generated for KNC, KNL,
SKX

• a3_double.c(13,17):remark #34030: adjacent
sparse (strided) loads optimized for speed. Details:
stride { 24 }, types { F64-V512, F64-V512, F64-
V512 }, number of elements { 8 }, select mask
{ 0x000000007 }

typedef struct {

double x;

double y;

double z;

} s;

s aos[16];

double foo(){

int i, j;

double res = 0;

for (i=0; i<16; i++) {

double xt = aos[i].x;

double yt = aos[i].y;

double zt = aos[i].z;

res += xt + yt + zt;

}

return res;

}

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

miniMD: Adjacent Gather on KNC based on Indexed Loads

• Three gather’s of eight double precision
elements with offsets 0, 8, 16

• 8 byte padding is present at offset 24

• Full mask, no up-conversion, scale is 8,
no NT hint

• 4-byte indices

• Same base; offsets are included into
index vectors, so each gather uses its
own index vector

for(int k = 0; k < numneighs; k++) {

const int j = neighs[k];
double x = x[j * PAD + 0];
double y = x[j * PAD + 1];
double z = x[j * PAD + 2];
…

}

A scenario of gathers in a
particular version of miniMD

1.11x improvement on KNC

force_lj.cpp(417,37):remark #34029:
adjacent sparse (indexed) loads optimized
for speed. Details: types { F64-V512, F64-
V512, F64-V512 }, number of elements { 8
}, select mask { 0x000000007 }

Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Intel
Confidential

58

Fortran Assumed Shape Array Parameter

Assumed shape arrays as parameters

subroutine ash(A, B, C)

real, intent(inout), dimension(:) :: A

real, intent(in), dimension(:) :: B

real, intent(in), dimension(:) :: C

A = A + B * C

return

end

No information is passed explicitly by the programmer

– Implicit interface (dope vector) for extent, stride info

– Populated by the compiler, passed from caller to callee

Can have any stride

– Compiler does not generate packing/unpacking at call site

Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Intel
Confidential

59

Assumed Shape Array Vectorization

Any stride is possible for each of the 3 arrays

– Multiversion code to check for stride at runtime

– How many versions? There are 2^3=8 combinations:
– unitstride(A) & unitstride(B) & unitstride(C)

– unitstride(A) & unitstride(B) & !unitstride(C)

– unitstride(A) & !unitstride(B) & unitstride(C)

– ...

– !unitstride(A) & !unitstride(B) & !unitstride(C)

– Compiler generates 2 versions:
– Ver1: All arrays are unitstride

– Ver2: At least 1 array is non-unitstride

– Version 1 can be vectorized (on KNC) using
vmovaps/vloadunpack (alignment)

– Version 2 can be vectorized using vgather

Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Intel
Confidential

60

Assumed Shape Array Alignment

Each array can have arbitrary alignment

– User should help compiler with alignment assumptions (as
before)

– Without user help, the compiler generates
– A peel loop that iterates until one array is aligned

• Preferred array to align is the one we store
into (i.e., A)

– Still (N-1) arrays could be unaligned

– A multiversion code that checks alignment of B (2nd array)

– No further multiversioning for array C (too deep version tree)

if(A,B,C all unit stride)

Peel loop until A is aligned (uses vscatter for A)

if(B is aligned)

[al64] A = [al64] B + C //Version 1a

else

[al64] A = B + C //Version 1b

endif

else

A = B + C //Version 2

endif

Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.
61

Assumed Shape Array Multiversioning
Scellrb5% cat -n t7.f90

1 subroutine assumed_shape1(A, B, C)

2

3 real, intent(inout), dimension(:) :: A

4 real, intent(in), dimension(:) :: B, C

5

6 A = A + B * C

7

8 return

9 end

scellrb5%: ifort -O3 -opt-report5 -opt-report-file=stderr -xmic-avx512 -c
t7.f90

Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.
62

Loop Report – Assumed Shape Array (1)
LOOP BEGIN at t7.f90(6,7)

<Peeled, Multiversioned v1>

remark #15389: vectorization support: reference a has unaligned access …

remark #15381: vectorization support: unaligned access used inside loop body

remark #15301: PEEL LOOP WAS VECTORIZED

LOOP END

LOOP BEGIN at t7.f90(6,7)

<Multiversioned v1>

remark #25233: Loop multiversioned for stride tests on Assumed shape arrays

remark #15389: vectorization support: reference a has aligned access …

remark #15389: vectorization support: reference b has unaligned access

remark #15389: vectorization support: reference c has aligned access

remark #15381: vectorization support: unaligned access used inside loop body

remark #15399: vectorization support: unroll factor set to 2

remark #15300: LOOP WAS VECTORIZED

remark #15450: unmasked unaligned unit stride loads: 1 …

LOOP END

LOOP BEGIN at t7.f90(6,7)

<Alternate Alignment Vectorized Loop, Multiversioned v1>

LOOP END

LOOP BEGIN at t7.f90(6,7)

<Remainder, Multiversioned v1> …

remark #15301: REMAINDER LOOP WAS VECTORIZED

LOOP END

Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.
63

Loop Report – Assumed Shape Array (2)

LOOP BEGIN at t7.f90(6,7)

<Multiversioned v2>

remark #15416: vectorization support: scatter was generated for the variable a: strided by non-constant
value

remark #15415: vectorization support: gather was generated for the variable a: strided by non-constant
value

remark #15415: vectorization support: gather was generated for the variable b: strided by non-constant
value

remark #15415: vectorization support: gather was generated for the variable c: strided by non-constant
value

remark #15399: vectorization support: unroll factor set to 2

remark #15300: LOOP WAS VECTORIZED

remark #15460: masked strided loads: 3

remark #15462: unmasked indexed (or gather) loads: 1

remark #15475: --- begin vector loop cost summary ---

remark #15476: scalar loop cost: 9

remark #15477: vector loop cost: 10.870

remark #15478: estimated potential speedup: 1.530

remark #15488: --- end vector loop cost summary --- …

LOOP END

LOOP BEGIN at t7.f90(6,7)

<Remainder, Multiversioned v2>

LOOP END

Software & Services Group

Copyright© 2013, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Compiler Strictly Follows Language Rules

• Are “long” and “int” same?

– Not on GCC based Intel64 platforms

– Potential Impact: portability and

performance

• Can complicate compiler analysis.

• May lose vectorization

• 1.0 and sin() are double.

1.0f and sinf() are float.

– Hard to catch in the source code.

– Unintended type converts all over in

ASM code

– Computation unintentionally

expensive

64

float x[N], y[N];

for (i = 0; i < N; i++)

y[i] = sin(x[i] + 1.0)+1.0
float

floatdouble doubledouble

float x[N], y[N];

for (i = 0; I < N; i++)

y[i] = sinf(x[i] + 1.0f)+1.0f

Look for Hints of Vector Inefficiency
• Scellrb5% cat -n t12_sin.c

• 1 #include <stdio.h>

• 2

• 3 void foo1(float * restrict a, float *b, float *c, int n)

• 4 {

• 5 int i;

• 6 for (i=0; i<n; i++) {

• 7 a[i] = sin(b[i] + 1.0);

• 8 }

• 9 }

• 10

• scellrb5%: icc -O2 -qopt-report4 -qopt-report-file=stderr t12_sin.c -restrict -c -xmic-
avx512

65

Kernel Loop Report–Vector Inefficiency
• LOOP BEGIN at t12_sin.c(6,3)

• remark #15389: vectorization support: reference b has unaligned access [t12_sin.c(7,12)]

• remark #15389: vectorization support: reference a has unaligned access [t12_sin.c(7,5)]

• remark #15381: vectorization support: unaligned access used inside loop body

• remark #15399: vectorization support: unroll factor set to 2

• remark #15417: vectorization support: number of FP up converts: single precision to double
precision 1 [t12_sin.c(7,12)]

• remark #15418: vectorization support: number of FP down converts: double precision to single
precision 1 [t12_sin.c(7,5)]

• remark #15300: LOOP WAS VECTORIZED

• remark #15442: entire loop may be executed in remainder

• remark #15450: unmasked unaligned unit stride loads: 1

• remark #15451: unmasked unaligned unit stride stores: 1

• remark #15475: --- begin vector loop cost summary ---

• remark #15476: scalar loop cost: 113

• remark #15477: vector loop cost: 10.060

• remark #15478: estimated potential speedup: 9.980

• remark #15482: vectorized math library calls: 1

• remark #15487: type converts: 2

• remark #15488: --- end vector loop cost summary ---

• LOOP END

66

Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Alignment and Module Data
Known Sized Arrays

Example: Global arrays declared in modules with
known size.
module mymod

!dir$ attributes align:64 :: a

!dir$ attributes align:64 :: b

real (kind=8) :: a(1000), b(1000)

end module mymod

subroutine add_them()

use mymod

implicit none

! array syntax shown, could also be explicit loop

!...No explicit directive needed to say that A and B

! are aligned, the USE brings that information

a = a + b

end subroutine add_them

This saves coding effort AND

improves performance!

67

Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.
68

Fortran Alignment Example
scellrb5% cat -n t2_mod.f90

1 module mymod

2 !dir$ attributes align:64 :: a, b, c, d // Alternatively use –align array64byte

3 real*8 :: a(1000), b(1000), c(1000), d(1000)

4 end module mymod

scellrb5% cat -n sub3.f90

1 subroutine add_them2(low1, up1)

2 use mymod

3 implicit none

4 integer low1, up1, i

5

6 ! No explicit directive should be needed to tell the compiler that

7 ! base pointers of A and B are aligned, the USE should bring that information.

8 ! But since the lower bound of the loop is not 1, compiler does

9 ! loop-peeling - once peeling is done for one array, all array

10 ! accesses get fully aligned in the kernel loop

11

12 do i=low1, up1

13 a(i) = b(i) + c(i) + d(i)

14 enddo

15 end subroutine add_them2

Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.
69

Fortran Alignment Example (2)
LOOP BEGIN at sub3.f90(12,3)

<Peeled>

remark #15389: vectorization support: reference a has unaligned access [sub3.f90(13,5)]
…

remark #15381: vectorization support: unaligned access used inside loop body

remark #15301: PEEL LOOP WAS VECTORIZED

remark #25015: Estimate of max trip count of loop=125

LOOP END

LOOP BEGIN at sub3.f90(12,3)

remark #15388: vectorization support: reference a has aligned access [sub3.f90(13,5)]

remark #15388: vectorization support: reference b has aligned access [sub3.f90(13,5)]

remark #15388: vectorization support: reference c has aligned access [sub3.f90(13,5)]

remark #15388: vectorization support: reference d has aligned access [sub3.f90(13,5)]

remark #15399: vectorization support: unroll factor set to 4

remark #15300: LOOP WAS VECTORIZED …

remark #25015: Estimate of max trip count of loop=31

LOOP END

LOOP BEGIN at sub3.f90(12,3)

<Remainder>

remark #15388: vectorization support: reference a has aligned access [sub3.f90(13,5)] …

remark #15301: REMAINDER LOOP WAS VECTORIZED

remark #25015: Estimate of max trip count of loop=125

LOOP END

Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.
70

Appln Example Using Elemental Function
#pragma simd // simd pragma for outer-loop at call-site of elemental-function
for (int i = beg*16; i < end*16; ++i)

particleVelocity_block(px[i], py[i], pz[i], destvx + i, destvy + i, destvz + i, vel_block_start,
vel_block_end);

__declspec(vector(uniform(start,end), linear(velx,vely,velz)))
static void particleVelocity_block(const float posx, const float posy, const float posz,

float *velx, float *vely, float *velz, int start, int end) {
__assume_aligned(velx,64); __assume_aligned(vely,64); __assume_aligned(velz,64);
for (int j = start; j < end; ++j) {

const float del_p_x = posx - px[j]; const float del_p_y = posy - py[j];
const float del_p_z = posz - pz[j];
const float dxn= del_p_x * del_p_x + del_p_y * del_p_y + del_p_z * del_p_z +pa[j]* pa[j];
const float dxctaui = del_p_y * tz[j] - ty[j] * del_p_z;
const float dyctaui = del_p_z * tx[j] - tz[j] * del_p_x;
const float dzctaui = del_p_x * ty[j] - tx[j] * del_p_y;
const float dst = 1.0f/std::sqrt(dxn);
const float dst3 = dst*dst*dst;
*velx -= dxctaui * dst3;
*vely -= dyctaui * dst3;
*velz -= dzctaui * dst3;

}
}

• Performance improvement over 2X going from inner to outer-loop
vectorization

Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.
71

Appln Example using Compress Idiom
int index_0 = 0;
for(int k0=0; k0<count0; k0++) {

TYPE X1 = *(Pos0 + k0); TYPE Y1 = *(Pos0 + k0 + count0);
TYPE Z1 = *(Pos0 + k0 + 2*count0);
#pragma loop_count min(220) avg (300) max (380)

for(int k1=0; k1<count1; k1+=1) {
TYPE X0 = *(Pos1 + k1);
TYPE Y0 = *(Pos1 + k1 + count1);
TYPE Z0 = *(Pos1 + k1 + 2*count1);
TYPE diff_X = (X0 - X1);
TYPE diff_Y = (Y0 - Y1);
TYPE diff_Z = (Z0 - Z1);
TYPE norm_2 = (diff_X*diff_X) + (diff_Y*diff_Y) + (diff_Z*diff_Z);

if ((norm_2 >= rmin_2) && (norm_2 <= rmax_2))
Packed[index_0++] = norm_2;

}
}

• Perf gain close to 10X going from no-vec to vec

• Index_0 is getting updated under a condition – not linear

• Currently this cannot be expressed using simd clauses

• Extensions to simd-syntax to express this idiom is WIP

Mandel Ex. for Vectorizing Outer Loop
Original Src:

mandel (x0, x1, y0, y1,
width, height,
max_recur, output)

{
dx = (x1-x0) / width;
dy = (y1-y0) / height;

for(j=0; j<height; j++) {
for(i=0; i<width; i++) {

index = j * width + i;
x = x0 + i * dx;
y = y0 + j * dy;
std::complex c(x,y);
mandel_inner(c, max_recur, &output[index]);

}
}

}
main() {

//read inputs
...
mandel(...);

}
• Two loops that go over 2D space of points,
• Call mandel_inner for each point.

mandel_inner (
std::complex<float> c,
int max_recur,
char *output)

{

std::complex z = c;
int i=0;

while (i < max_recur) {
if (z.real()*z.real()+z.imag()*z.imag() > 4.0)
break;

z = z * z + c;
i++;

}
*output = i * (255.0/max_recur);

}

• For a given point, calculate how many
iterations is needed for that point to go
out of bounds.

Mandel Version 2: Elemental Function
mandel (x0, x1, y0, y1,

width, height,
max_recur, output) {

dx = (x1-x0) / width;
dy = (y1-y0) / height;

#pragma omp parallel for
for(j=0; j<height; j++) {
#pragma simd

for(i=0; i<width; i++) {
index = j * width + i;
x = x0 + i * dx;
y = y0 + j * dy;
mandel_inner(x,y, max_recur,
&output[index]);

}
}

}

• Vectorization of the loop is simple

• The function to be called is already
vectorized.

__declspec(vector(uniform(max_recur),
linear(output)))

mandel_inner (float c_re, float c_im
int max_recur,
int * output) {

float z_re=c_re, z_im=c_im;
int i=0;

while (i < max_recur) {
if (z_re*z_re+z_im*z_im > 4.0)

break;
tmp = z_re*z_re - z_im*z_im + c_re;
z_im = 2*z_re*z_im + c_im;
z_re = tmp;
i++;

}

*output = i * (255.0/max_recur);
}

• Declared as a “SIMD enabled function".
• Function is vectorized
• SIMD Loop is vectorized

Mandel Version 3: Array Notation
#define VLEN 16 // on MIC

mandel (x0, x1, y0, y1,
width, height,
max_recur, output) {

dx = (x1-x0) / width;
dy = (y1-y0) / height;

#pragma omp parallel for
for(j=0; j<height; j++) {

for(i=0; i<width; i+=VLEN) {
unsigned int ix[VLEN];
complex<float> c;
index = j * width + i;
ix = __sec_implicit_index(0);
c[:].re = x0 + (i+ix[:]) * dx;
c[:].im = y0 + j * dy;
mandel_inner(c, max_recur,
&output[index]);

}
}

}

void mandel_inner(struct complex<float> c[VLEN],
unsigned int max_recur,
unsigned int output[VLEN]) {

unsigned int i = 0; complex<float> z[VLEN];
int mask[VLEN], result[VLEN];
result[:] = 0;
z[:].re = c[:].re;
z[:].im = c[:].im;
while (i < max_recurrences) {
float absq[VLEN];
absq[:] = z[:].re * z[:].re + z[:].im * z[:].im;
mask[:] = absq[:] < 4.0;
if (__sec_reduce_all_zero(mask[:]))
break;

result[:] += mask[:];
float oldz_re[VLEN];
oldz_re[:] = z[:].re;
z[:].re = (z[:].re * z[:].re) -

(z[:].im * z[:].im) + c[0:VLEN].re;
z[:].im = (oldz_re[:] * z[:].im * TWO) +

c[0:VLEN].im;
i++;

}
output[0:VLEN] = (result[:]*(255.0/max_recur));

}

• Some extra effort by the programmer guarantees vectorization
• Direct translation into vector code

75

Predicate Optimization

 Hoist affine and invariant conditions

do i = 1, n do i = 1, m-1

if (i>=m) S2

S1 enddo

end if do i= m,n

S2 S1 S2

end do enddo

76

Predicate opt

example

for (i=i1; i<=i2; i++) {

if (i == val)

sum++;

*cnt_ptr=*cnt_ptr*5 +1;

}

/* Region 1 */

cnt1 = min(i2-i1+1, val-i1);

for (i=1; i<=cnt1; i++) {

*cnt_ptr = *cnt_ptr*5 + 1;

}

/* Region 2 */

If ((i1<=val) && (val<=i2) {

sum++;

*cnt_ptr = *cnt_ptr*5 + 1;

}

/* Region 3 */

cnt2 = i2-val;

if (val < i1)

cnt2=i2-i1+1;

for (i=1; i<=cnt2; i++) {

*cnt_ptr = *cnt_ptr*5 + 1;

}

77

MCDRAM Support in FORTRAN

• !DIR$ attributes fastmem :: data-object

– Says put that data object in KNL “fast memory” aka MCDRAM

– data-object is an allocatable array on heap memory–any type, any

shape {up to size limits of HBW memory)

• Compiler will generate calls to routines like

hbw_posix_memalign and hbw_free to allocate and free

“fast memory”

• Full support available starting with 15.0 Product Update 1

78

FORTRAN fastmem Example
program main

Real(8), allocatable, dimension(:,:) :: A, B, C

!DIR$ ATTRIBUTES FASTMEM :: A, B, C

Integer, parameter :: N=600

Allocate (A(N,N), B(N,N), C(N,N))

call test(a,b,c,N)

print *, a(1,1), b(2,2), c(3,3)

end

subroutine test(a,b,c,N)

integer len, i,j

Real(8), dimension(N,N) :: A, B, C

Integer:: N

Print *, 'start'

call mic_sub(A, N)

call mic_sub(B, N)

call mic_sub(C, N)

end subroutine test

subroutine mic_sub(a,len)

real(8) a(len,len)

integer i ,len

do i = 1, len

do j =1, len

a(i,j) = 2*(i+j)

enddo

enddo

end

79

FORTRAN fastmem Example2

module work_array

TYPE FBLOCK

INTEGER :: NXFULL

REAL, ALLOCATABLE :: work1 (:,:)

REAL, ALLOCATABLE :: work2 (:,:)

!!!DIR$ ATTRIBUTES FASTMEM :: work2

!DIR$ ATTRIBUTES FASTMEM :: work1

END TYPE FBLOCK

integer N1

TYPE(FBLOCK) :: PV1

end module

program main

use work_array

read (input, *) N1

PV1%NXFULL = N1

allocate(PV1%work1(N1, 2*N1))

PV1%work1 = 2

allocate(PV1%work2(N1, 2*N1))

PV1%work2 = 3

do j=1,2*PV1%NXFULL

do i=1,PV1%NXFULL

print *, PV1%work1(i, j)

print *, PV1%work2(i, j)

enddo

enddo

end program

Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.
80

Review Sheet for Efficient Vectorization
• Are you using vector-friendly options such as –align array64byte?

• Are all hot loops vectorized and maximizing use of unit-stride accesses?

• Have you looked into outer-loop vs. inner-loop vec tradeoffs?

• Align the data and Tell the compiler

• Have you studied the opt-report output for hot-loops to ensure these?

• Are there any peel-loop and remainder-loop generated for your key-loops (Have
you added loop_count pragma)?

• Make changes to ensure significant runtime is not being spent in such loops

• Are you able to pad your arrays and get improved performance with –opt-
assume-safe-padding (only on KNC)?

• Have you added “#pragma vector aligned nontemporal” for all loops with
streaming-store accesses to maximize performance?

• Avoid branchy code inside loops to improve vector-efficiency

• Avoid duplicates between then and else, use builtin_expect to provide hint,
move loop-invariant loads and stores under the branch to outside loops

• Use hardware supported operations only (rest will be emulated)

Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.
81

Review Sheet for Vectorization 2
• Use OMP4.0 or Intel Cilk Plus extensions for efficient and predictable

vectorization

• #pragma omp simd OR #pragma SIMD OR !DEC$ SIMD

• Short-vector array notation for C/C++

• Shifts burden to the user to express explicit vectorization

• High-level and portable alternative to using intrinsics

• Use simd-enabled functions (C and Fortran) for loops with function
calls

• Can also be used to express outer-loop vectorization

• #pragma omp declare simd

• Study opportunities for outer-loop vectorization based on code access
patterns

• Use array-notations OR simd-enabled-functions to express it

• Make memory accesses unit-strided in vector-loops as much as possible

• Important for C and Fortran

• F90 array notation also can be used in short-vector form

Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.
82

Review Sheet for Advanced Optimizations
• Are you able to take advantage of –fp-model fast=2?

• Enables –complex-limited-range – important if using “complex” datatype

• Enables –fimf-domain-exclusion=15 (significant perf adv on KNC)

• If your algorithm allows it, have you tried more aggressive floating-point options:

• -fimf-precision=low, -no-prec-div, -no-prec-sqrt, -fast-transcendentals, …

• If your application requires use of –fp-model precise:

• In some cases, users (who want high-performing vector code) may use:

• –fp-model precise –fimf-max-error=1 –fast-transcendentals –no-prec-div –no-
prec-sqrt

• This will result in generating vectorized code with as much precision as SVML
supports – not IEEE, results may be non-reproducible between –O0 and –O2

• Have you tried prefetch tuning options?

• For indirect accesses, have you tried prefetching using pragmas?

• Have you maximized use of streaming stores for bandwidth savings?

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Fortran Vectorization Tips

• https://software.intel.com/en-us/articles/fortran-
array-data-and-arguments-and-vectorization

• Use CONTIGUOUS Attribute for pointers and assumed
shape arrays

• Use –align array64byte option

• Use –opt-assume-safe-padding (KNC only) wherever
possible to change gathers into unit-strided loads

https://software.intel.com/en-us/articles/fortran-array-data-and-arguments-and-vectorization

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.84

Reference Links
• http://software.intel.com/en-us/articles/programming-and-compiling-

for-intel-many-integrated-core-architecture - MIC Compiler tips, lots
of useful information for Xeon as well

• http://software.intel.com/en-us/mic-developer - Intel(R) Xeon
Phi(TM) page

• https://software.intel.com/en-us/intel-isa-extensions - Intel ISA
Extensions

• https://software.intel.com/en-us/blogs/2013/avx-512-instructions -
AVX-512 instructions

• http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf -
OpenMP 4.0 Application Program Interface

http://software.intel.com/en-us/articles/vectorization-essentials
http://software.intel.com/en-us/mic-developer
https://software.intel.com/en-us/intel-isa-extensions
https://software.intel.com/en-us/blogs/2013/avx-512-instructions
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO
ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND
INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.
Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software,
operations and functions. Any change to any of those factors may cause the results to vary. You should consult other
information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of
that product when combined with other products.

Copyright © 2014, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are
trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for
optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and
SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not
specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable
product User and Reference Guides for more information regarding the specific instruction sets covered by
this notice.

Notice revision #20110804
85

Intel Confidential

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

• Support for majority of OpenMP* 4.0

– Cancel, cancellation point, depend, combined offload
constructs, workshare parallelization

– Major item not included: user-defined reductions

• Feature Complete! C++ 11

– Language features only, library features dependent on the
standard C++ library with the platform

• Feature Complete! Fortran 2003

• Fortran 2008 Blocks

• Redesign of compiler Optimization Reports
– including vec-report, loop optimizations, and inlining reports

• -ansi-alias option enabled as part of default level –O2 (Linux)

• Initial implementation of C++ offload to Intel® Graphics
Technology

• New icl/icl++ compilers on OS X for improved compatibility
with clang/LLVM

15.0 Key Features: Big Items

87

Vec/Par/Loop

• Loop info embedded in ASM/OBJ with –g/-Zi

– Embedded information is a subset of the output

available from the text report

– Executable size increased slightly (~2%)

885/13/2015

Amber loop on KNC example

• Vectorized with
vector length 8

• Code generated
without opt: 3
gather-loops load
3*64 bytes of
adjacent data

Intel Confidential

for (int i = 0; i < size; ++i) {

for (int j = i + 1; j < size; ++j) {

xij = xi - data[3 * j];

yij = yi - data[3 * j + 1];

zij = zi - data[3 * j + 2];

..L50:

vgatherdpd 32+data(%rbx,%zmm1,8), %zmm3{%k2}

jkzd ..L49, %k2

vgatherdpd 32+data(%rbx,%zmm1,8), %zmm3{%k2}

jknzd ..L50, %k2

..L49:

..L52:

vgatherdpd 24+data(%rbx,%zmm1,8), %zmm2{%k1}

jkzd ..L51, %k1

vgatherdpd 24+data(%rbx,%zmm1,8), %zmm2{%k1}

jknzd ..L52, %k1

..L51:

..L54:

vgatherdpd 40+data(%rbx,%zmm1,8), %zmm7{%k3}

jkzd ..L53, %k3

vgatherdpd 40+data(%rbx,%zmm1,8), %zmm7{%k3}

jknzd ..L54, %k3

..L53:

Optimized KNC Sequence: Data Load

• Start address is
not aligned

• A pair of
loadunpacks is
required for each
64-byte chunk
load

vloadunpacklpd 24+data(,%r15,8), %zmm9

vloadunpacklpd 88+data(,%r15,8), %zmm12

vloadunpacklpd 152+data(,%r15,8), %zmm8

vloadunpackhpd 88+data(,%r15,8), %zmm9

vloadunpackhpd 152+data(,%r15,8), %zmm12

vloadunpackhpd 216+data(,%r15,8), %zmm8

for (int i = 0; i < size; ++i) {

for (int j = i + 1; j < size; ++j) {

xij = xi - data[3 * j];

yij = yi - data[3 * j + 1];

zij = zi - data[3 * j + 2];

8 7 6 5 4 3 2 1 t1

16 15 14 13 12 11 10 9 t2

24 23 22 21 20 19 18 17 t3

Full KNC sequence: Summary

• 3 pairs of loadunpacklpd/loadunpackhpd

• 6 cross-lane permutations

• 5 blends

• 2 in-lane shuffles or swizzles

• From 30% to 48% speed-up on KNC B0 for size
equal to 10000

Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.
92

Review Sheet (Partial) for Efficient OMP
Parallelization
• Is the algorithm able to take advantage of all available threads?

• In some cases, using OMP collapse may help – but make sure innermost loop
gets efficiently vectorized after collapsing

• May need stripmine loop to make sure innermost loop is not part of collapse

• Reduce any use of barrier synchronization, OMP locks, critical sections

• In some cases, using nowait clause may help (review example in BKM page)

• Use reductions where possible

• Are the OMP affinity settings right to cause no oversubscription?

• Different defaults for native vs. offload

• For offload, use ‘norespect’ to use all N*4 threads

• If you are using <4 threads/core, use –opt-threads-per-core=n

• Affinity tuning

• Balanced vs. Compact vs. Scatter vs. proclist, Core vs. Fine

• Try different OMP loop scheduling types – static vs. dynamic(<n>)

• Have you tuned your code (to overcome load-imbalance) with
KMP_BLOCKTIME=<default,0,50,infinite>

• Explicit tuning of OMP_STACKSIZE?

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

93

Intel® Compilers for Intel® Parallel Studio XE 2015
Intel® C++ 15.0 and Intel® Fortran 15.0

Productive language-level vectorization & parallelism models for advanced developers driving
application performance

 Common to both
 New OpenMP 4.0 vectorization simplifies taking advantage of SIMD instructions for great performance on

Intel® Xeon® and Xeon Phi™ processors and coprocessors
 Improved compiler optimization reports help quickly identify optimization opportunities. For Windows-based

developers, Visual Studio* 2010, 2012 and 2013 integration is included.
 Linux*, OS X*, Windows*, Android*
 Available now in a variety of configurations to suit different development needs. C++ Info Fortran Info

 Intel® C++ Compiler
 Intel Cilk™ Plus keywords for parallelism simplify implementation of task and data parallelism
 Complete C++11 support

 Intel® Fortran Compiler
 Support for the latest Fortran standards
 Rogue Wave* IMSL* Fortran Numerical Libraries: Performance add-on for Intel® Fortran

Windows suites

https://software.intel.com/en-us/c-compilers
https://software.intel.com/en-us/fortran-compilers

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

94

OpenMP* 4.0 Support
Intel Compilers

 Everything now supported in Intel C++ and Fortran compilers, except user-defined
reductions

 CANCEL directive: Requests cancellation of the innermost enclosing region

 CANCELLATION POINT directive: Defines a point at which implicit or explicit tasks
check to see if cancellation has been requested

 DEPEND clause on TASK directive: Enforces additional constraints on the scheduling of
a task by enabling dependences between sibling tasks in the task region.

 Combined constructs (TEAMS DISTRIBUTE, etc.)

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

What’s New
Intel® C++ Compiler

95

 Excellent outer-loop optimization

capabilities with either OpenMP* or Intel

Cilk™ Plus

 Intel® Cilk™ Plus : explicit vectorization.

Keyword versions of SIMD pragmas

added: _Simd, _Safelen, _Reduction

 Near complete OpenMP* 4.0, including

TASK dependency to speed performance

by enforcing task scheduling

 Easier to use, more insightful

optimization reports, including

vectorization, all consolidated under -

qopt-report

 Full C++11 language support

 Gcc*-compatible function

multiversioning

 Compiler details

 -ansi-alias enabled by default at –O2 and

above on Linux* C++ to enable better

performance, including vectorization

(matches –fstrict-aliasing defaults on gcc*)

 Compiler option –no-opt-dynamic-align to

disable generation of multiple code paths

depending on data alignment

 aligned_new header

 -fast/-Ofast enables –fp-model fast=2

 Improved lambda function debugging

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

96

GNU Compatibility
Intel® C++ Compiler

 To enable c++11 support you need to use
–std=c++11 (or –std=c++0x) option

 We currently support all c++11 features used in the GNU 4.8 versions of the headers
enabled when you use the option

 Depending upon the GNU on your system (i.e. g++ in your PATH) you may get different
features enabled

 Support of C++11 features requires support from C++ header files included with GNU
C/C++ installation – these features vary by version.

 Recommend use of GNU 4.8 or newer packages

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Easier Task & Data Parallelism with Intel® Cilk™ Plus
(Intel® C++ Compiler)

97

 Easier task & data parallelism with three
simple keywords :

 Cilk_for, Cilk_spawn, Cilk_sync

 Save time in implementing vectorization.
Use Intel® Cilk™ Plus Array Notation and
#pragma SIMD

Code snippet before #pragma SIMD

for(int i = 2; i < n ;i++)

y[i] = y[i-2] + 1;

Code snippet with #pragma SIMD

#pragma simd vectorlength(2)

for(int i = 2; i < n ;i++)

y[i] = y[i-2] + 1;

Serial code (left) made parallel with Intel® Cilk™ Plus
keywords.

No changes to original code.

int fib (int n)
{

if (n <= 2)
return n;

else {
int x,y;
x =

fib(n-1);
y =

fib(n-2);
return

x+y;
}

}

int fib (int n)
{

if (n <= 2)
return n;

else {
int x,y;
x = _Cilk_spawn fib(n-

1);
y = fib(n-2);
_Cilk_sync;
return x+y;

}
}

Array notation showing simple vector
multiplication

A[0:N] = b[0:N] * c[0:N];

More sophisticated example of array
notation

X[0:10:10] = sin(y[20:10:2]);

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

98

Intel® Cilk™ Plus and OpenMP* 4.0 Differences
Intel® C++ Compiler

Intel® Cilk™ Plus OpenMP* 4.0
Array Notations Support No Array Notations support

Support for User implemented vector function using
_declspec(vector_variant)implement)...)))
This feature enables the users to implement the vector variant of the SIMD enabled
function if they aren’t happy with the vector code generated by the compiler.

No Support for User implemented
vector functions.

#pragma simd has firstprivate(), vecremainder and assert clauses which “omp simd”
doesn’t support. Can mimic the behavior of aligned() clause in OMP4.0 with
__assume_aligned() or __builtin_assume_aligned()

“omp simd” has collapse() and
aligned() clauses which is not
supported by #pragma simd

_Simd keyword support for explicit vectorization apart from #pragma simd.
This keyword support was enabled for enabling threading and vectorization for a
single “for” loop which OpenMP4.0 could do with the following:

#pragma omp parallel for simd

No _Simd keyword support for explicit
vectorization.

Support for __intel_simd_lane() to identify the simd lane on which the current
operation is happening.

No support for identifying the
individual simd lane.

Supports built-in reduction operations like __sec_reduce_add(),
__sec_reduce_max_ind(), __sec_reduce_mul(), __sec_reduce_min_ind(),
__sec_reduce_all_zero(), __sec_reduce_all_nonzero(), __sec_reduce_min(),
__sec_reduce_max(), __sec_reduce_and(), __sec_reduce_or(), __sec_reduce_xor()

No support for built-in reducer
operations.

Supports writing custom reduction functions using:
__sec_reduce() and __sec_reduce_mutating()

No Support for custom reduction
functions.

Support for Array implicit index using __sec_implicit_index() No support for Array Implicit index.

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

What’s New
Intel® Fortran Compiler

99

 Improvements in both automatic and
explicit (using Intel or OpenMP
directives) vectorization, especially in
outer loop vectorization. Provides
improved robustness and performance.

 Full Fortran 2003 support including
Parameterized Derived Types

 Intel® Fortran supports Fortran 2008
Blocks and much more from Fortran
2008

 Near complete OpenMP* 4.0, including
task dependencies. What’s left? User-
defined reductions.

 Compiler option –no-opt-dynamic-align
to ensure run-to-run reproducibility with
relatively little impact on performance
(compared to –fp-model precise)

 Fortran option –init=snan to initialize all
uninitialized SAVEd scalar and array
variables of type REAL and COMPLEX to
signaling NaNs

 __intel_simd_lane() intrinsic to represent
simd lane number in a SIMD vector
function callable from Fortran using the
interoperability feature

 Support offload of arrays of pointers and
non-contiguous array slices (to Intel®
Xeon Phi™ coprocessors)

 gdb* debugger supports Intel Fortran
(Intel® Debugger removed)

 -fast/-Ofast enables –fp-model fast=2

 Fastmem support for KNL MCDRAM

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

100

Fortran OpenMP* Support: WORKSHARE
Intel® Fortran Compiler

 Can go parallel in many uses

 Simple array assignments such as A = B + C parallelize.

 Simple array assignments with overlap such as A = A + B + C parallelize.

 Array assignments with user-defined function calls parallelize such as A = A + F (B).
F must be ELEMENTAL.

 Array assignments with array slices on the right hand side of the assignment such as A
= A + B(1:4) + C(1:4) parallelize. If the lower bound of the left hand side or the array
slice lower bound or the array slice stride on the right hand side is not 1, then the
statement does not parallelize.

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Intel® Fortran Compiler BLOCK Examples

101

BLOCK Example

IF (swapxy) THEN
BLOCK
REAL(KIND(x)) tmp
tmp = x
x = y
y = tmp

END BLOCK
END IF

F08: DO CONCURRENT with BLOCK

DO CONCURRENT (I = 1:N)
BLOCK
REAL T
T = A(I) + B(I)
C(I) = T + SQRT(T)

END BLOCK
END DO

Without BLOCK, no way to create an iteration-
local (threadprivate) temporary variable

Vectorizer Architecture

1025/13/2015

In
p

u
t:

 C
/C

+
+/

FO
R

TR
A

N
 s

o
u

rc
e

co
d

e

Vectorizer

Intel® SSE Intel® AVX Intel® MIC

Express/expose vector parallelism

Array Notation

SIMD pragma

Vectorization Hints
(ivdep/vector pragmas)

Fully Automatic
Analysis

Elemental Function

Map vector
parallelism
to vector ISA

Optimize and Code Gen

V
ec

to
r

p
ar

t
o

f
In

te
l®

 C
ilk

™
P

lu
s

ex
te

n
si

o
n

Vectorizer makes

retargeting easy!

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

103

Improved Vectorization
Intel Compilers

 Guaranteed vectorization for entire SIMD loop and SIMD-enabled function while
isolating offending code

 Apply partial vectorization escape

 Serialize execution of offending code section (usually small portion)

 Works at both statement and expression level

 Currently enabled for SIMD loops and SIMD-enabled (vector) functions

 Significantly reduced SIMD vectorization bail-outs due to cryptic reasons, e.g.
“statement cannot be vectorized”, “operation cannot be vectorized”, “unsupported data
type”, etc.

 Customers more satisfied with smaller number of SIMD vectorization bail-outs

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

5/13/2015
104

Cilk Plus Improvements & OpenMP 4.0 SIMD Support

OpenMP 4.0 syntax support

 For both loops and functions

 Stricter syntax checking

 Alignment specification supported

 Safelen semantics

New public ABI support for vector
functions

Support for private/lastprivate
arrays and structs

 SOA re-layout for non-escaping
local private structs and arrays

VL agreement rules for caller and callee relaxed

 Longer VL caller may call shorter VL callee [multiple calls emitted]

#pragma omp simd aligned(a,c)

for (int i; i <N; i++) {

a[i] = b[i]*c[i];

}

#pragma simd

for (int i; i <N; i++) {

float3 q; // SIMD private

q.f1 = a[i] + b[i];

q.f2 = a[i] - b[i];

}

• q.f1 is unit-stride

access, not stride 3*unit

• Same done for local

arrays

Updates to MIC Vectorization

• Support for compress/expand
idiom
– Using packstore/loadunpack

on KNC

– Using vcompress/vexpand on KNL

• Improvements to remainder and low trip count
masked vectorization
– Non-masked code path for full mask (if needed)

– -opt-assume-safe-padding option on KNC to mitigate
vector load using gather issue

• Masks handling improvements

• Optimized math functions with controllable precision

1055/13/2015

for (int i; i <N; i++) {

if (a[i] > 0) {

b[j++] = a[i]; //

compress

c[i] = a[k++]; // expand

}

}
• Cross-iteration dependencies

by j and k

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Reference Links - 2

• http://software.intel.com/en-us/intro-to-vectorization-using-intel-cilk-
plus - Cilk Plus webinar

• http://software.intel.com/en-us/code-samples/intel-c-compiler/ - Intel
C++ Compiler code samples

• http://software.intel.com/en-us/articles/getting-started-with-intel-
cilk-plus-array-notations/#! – Intel® Cilk™ Plus Array Notation

• http://software.intel.com/en-us/articles/intelr-cilktm-plus-white-
paper#! – Intel® Cilk™ Plus White Paper

• http://software.intel.com/en-us/articles/implementing-sepia-filters-
with-intelr-cilktm-plus#! – Improving Sepia filter performance with
Intel® Cilk™ Plus

• http://software.intel.com/en-us/articles/improving-averaging-filter-
performance-using-intel-cilk-plus#! – Improving Averaging filter
performance with Intel® Cilk™ Plus

106

http://software.intel.com/en-us/intro-to-vectorization-using-intel-cilk-plus
http://software.intel.com/en-us/code-samples/intel-c-compiler/
http://software.intel.com/en-us/articles/getting-started-with-intel-cilk-plus-array-notations/
http://software.intel.com/en-us/articles/intelr-cilktm-plus-white-paper
http://software.intel.com/en-us/articles/implementing-sepia-filters-with-intelr-cilktm-plus
http://software.intel.com/en-us/articles/improving-averaging-filter-performance-using-intel-cilk-plus

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Reference Links - 3

• http://software.intel.com/en-us/articles/improving-discrete-
cosine-transform-performance-using-intelr-cilktm-plus#! –
Improving DCT kernel performance using Intel® Cilk™ Plus

• http://software.intel.com/en-us/articles/call-site-dependence-
for-elemental-functions-simd-enabled-functions-in-c#! –
SIMD-enabled functions explained (call site dependence)

• http://software.intel.com/en-us/articles/usage-of-linear-and-
uniform-clause-in-elemental-function-simd-enabled-function-
clause#! – SIMD-enabled functions with clauses explained

• http://software.intel.com/en-us/blogs/2013/06/07/resources-
about-intel-transactional-synchronization-extensions - Intel(R)
TSX

107

http://software.intel.com/en-us/articles/improving-discrete-cosine-transform-performance-using-intelr-cilktm-plus
http://software.intel.com/en-us/articles/call-site-dependence-for-elemental-functions-simd-enabled-functions-in-c
http://software.intel.com/en-us/articles/usage-of-linear-and-uniform-clause-in-elemental-function-simd-enabled-function-clause
http://software.intel.com/en-us/blogs/2013/06/07/resources-about-intel-transactional-synchronization-extensions

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Reference Links - 4

• http://halobates.de/adding-lock-elision-to-linux.pdf - Intel(R)
TSX presentation by Andi Kleen

• http://software.intel.com/en-us/intel-isa-extensions - Intel(R)
MPX page

• http://software.intel.com/en-us/c-compiler-android - Intel C++
Compiler for Android

• http://software.intel.com/en-us/articles/intel-compilers-for-
linux-compatibility-with-gnu-compilers-0 - GNU Compiler
Compatibility

108

http://halobates.de/adding-lock-elision-to-linux.pdf
http://software.intel.com/en-us/intel-isa-extensions
http://software.intel.com/en-us/c-compiler-android

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Compiler Based Vectorization
Extension Specification

Feature SIMD
Extension

Intel® Streaming SIMD Extensions 2 (Intel® SSE2) as available in initial Pentium®

4 or compatible non-Intel processors
sse2

Intel® Streaming SIMD Extensions 3 (Intel® SSE3) as available in Pentium® 4 or
compatible non-Intel processors

sse3

Supplemental Streaming SIMD Extensions 3 (SSSE3) as available in Intel® Core™2
Duo processors

ssse3

Intel® SSE4.1 as first introduced in Intel® 45nm Hi-K next generation Intel Core™
micro-architecture

sse4.1

Intel® SSE4.2 Accelerated String and Text Processing instructions supported first
by Intel® Core™ i7 processors

sse4.2

Like ssse3 but optimizes for the Intel® Atom™ processor and Intel® Centrino®
Atom™ Processor Technology

ssse3_atom

Intel® Advanced Vector Extensions (Intel® AVX) as available in 2nd generation
Intel® Core™ processor family

avx

Intel® Advanced Vector Extension (Intel® AVX) including instructions offered by
the 3rd generation Intel® Core processor

core-avx-I

Intel® Advanced Vector Extension 2 (Intel® AVX2) as provided by a 4th Generation
Intel® Core Processors and above

core-avx2

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Loops with Lots of Memory Accesses

• In some cases, you can do careful allocation of arrays or choose the
extents to add some padding to reduce associativity issues:

• If you have a loop access of the form:

define FD_REPEAT(x,idx,coeff) +coeff[0] * x##_4[(idx)] \

+coeff[1] * (x##_3[(idx)] + x##_5[(idx)]) \

+coeff[2] * (x##_2[(idx)] + x##_6[(idx)]) \

+coeff[3] * (x##_1[(idx)] + x##_7[(idx)]) \

+coeff[4] * (x##_0[(idx)] + x##_8[(idx)])

for (j=0; j<STREAM_ARRAY_SIZE; j++)

a[j] = scalar*c[j]

FD_REPEAT(b_ext,j,vscalar);

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Loops with Lots of Memory Accesses-2
And the data allocation was done as follows:

a = _mm_malloc((STREAM_ARRAY_SIZE) * sizeof(STREAM_TYPE), 64);

b = _mm_malloc((STREAM_ARRAY_SIZE) * sizeof(STREAM_TYPE), 64);

c = _mm_malloc((STREAM_ARRAY_SIZE) * sizeof(STREAM_TYPE), 64);

b_ext_0 = _mm_malloc((STREAM_ARRAY_SIZE) * sizeof(STREAM_TYPE), 64);

b_ext_1 = _mm_malloc((STREAM_ARRAY_SIZE) * sizeof(STREAM_TYPE), 64);

b_ext_2 = _mm_malloc((STREAM_ARRAY_SIZE) * sizeof(STREAM_TYPE), 64);

b_ext_3 = _mm_malloc((STREAM_ARRAY_SIZE) * sizeof(STREAM_TYPE), 64);

b_ext_4 = _mm_malloc((STREAM_ARRAY_SIZE) * sizeof(STREAM_TYPE), 64);

b_ext_5 = _mm_malloc((STREAM_ARRAY_SIZE) * sizeof(STREAM_TYPE), 64);

b_ext_6 = _mm_malloc((STREAM_ARRAY_SIZE) * sizeof(STREAM_TYPE), 64);

b_ext_7 = _mm_malloc((STREAM_ARRAY_SIZE) * sizeof(STREAM_TYPE), 64);

b_ext_8 = _mm_malloc((STREAM_ARRAY_SIZE) * sizeof(STREAM_TYPE), 64);

Copyright© 2013, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Loops with Lots of Memory Accesses-2
Try this instead:

a = _mm_malloc((STREAM_ARRAY_SIZE) * sizeof(STREAM_TYPE), 64);

b = _mm_malloc((STREAM_ARRAY_SIZE) * sizeof(STREAM_TYPE), 64);

c = _mm_malloc((STREAM_ARRAY_SIZE) * sizeof(STREAM_TYPE), 64);

b_ext_0 = _mm_malloc((STREAM_ARRAY_SIZE) * sizeof(STREAM_TYPE), 64);

// Shift the start-point of b_ext_* to reduce set-associativity problems.

// Make sure added value is a multiple of 16 (to keep the 64-byte alignment for base-ptr

b_ext_0 = b_ext_0 + 16;

b_ext_1 = _mm_malloc((STREAM_ARRAY_SIZE) * sizeof(STREAM_TYPE), 64);

b_ext_1 = b_ext_1 + 16;

b_ext_2 = _mm_malloc((STREAM_ARRAY_SIZE) * sizeof(STREAM_TYPE), 64);

b_ext_2 = b_ext_2 + 32;

b_ext_3 = _mm_malloc((STREAM_ARRAY_SIZE) * sizeof(STREAM_TYPE), 64);

b_ext_3 = b_ext_3 + 32;

…

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Impressive Performance Improvement
Intel® Compiler OpenMP* 4.0 Explicit Vectorization

113

 Two lines added that take full advantage of
both SSE or AVX

 Pragmas ignored by other compilers so code is
portable

typedef float complex fcomplex;

const uint32_t max_iter = 3000;

#pragma omp declare simd uniform(max_iter), simdlen(16)

uint32_t mandel(fcomplex c, uint32_t max_iter)

{

uint32_t count = 1; fcomplex z = c;

while ((cabsf(z) < 2.0f) && (count < max_iter)) {

z = z * z + c; count++;

}

return count;

}

uint32_t count[ImageWidth][ImageHeight];

…… …. …….

for (int32_t y = 0; y < ImageHeight; ++y) {

float c_im = max_imag - y * imag_factor;

#pragma omp simd safelen(16)

for (int32_t x = 0; x < ImageWidth; ++x) {

fcomplex in_vals_tmp = (min_real + x * real_factor) +

(c_im * 1.0iF);

count[y][x] = mandel(in_vals_tmp, max_iter);

}

}

1.00

2.28

5.29

0.0

1.0

2.0

3.0

4.0

5.0

6.0

Serial SSE 4.2 AVX2

S
p

e
e

d
u

p

Mandelbrot calculation speedup
(higher is better)

Configuration: Intel® Xeon® CPU E3-1270 v3 @ 3.50 GHz system (4 cores with Hyper-Threading On), running at 3.50GHz, with 32.0GB RAM, L1 Cache 256KB, L2
Cache 1.0MB, L3 Cache 8.0MB, 64-bit Windows* Server 2012 R2 Datacenter. Compiler options:, SSE4.2: -O3 –Qipo –QxSSE4.2 or AVX2: -O3 –Qipo –QxCORE-AVX2.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark
and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the
results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the
performance of that product when combined with other products. * Other brands and names are the property of their respective owners. Benchmark Source: Intel
Corporation

Optimization Notice: Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not
unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not
guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-
dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel
microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information
regarding the specific instruction sets covered by this notice. Notice revision #20110804 .

Normalized performance data – higher is better

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Impressive Performance Improvement
Intel® Compiler OpenMP* 4.0 Explicit Vectorization

114

 Three lines added that take full advantage of
both SSE or AVX

 Pragma’s ignored by other compilers so code
is portable

#pragma omp declare simd linear(z:40) uniform(L, N, Nmat) linear(k)
float path_calc(float *z, float L[][VLEN], int k, int N, int Nmat)

#pragma omp declare simd uniform(L, N, Nopt, Nmat) linear(k)
float portfolio(float L[][VLEN], int k, int N, int Nopt, int Nmat)
… … …
for (path=0; path<NPATH; path+=VLEN) {

/* Initialise forward rates */
z = z0 + path * Nmat;

#pragma omp simd linear(z:Nmat)
for(int k=0; k < VLEN; k++) {

for(i=0;i<N;i++) {
L[i][k] = L0[i];

}

/* LIBOR path calculation */
float temp = path_calc(z, L, k, N, Nmat);
v[k+path] = portfolio(L, k, N, Nopt, Nmat);

/* move pointer to start of next block */
z += Nmat;

}
}

1.00

2.73

4.09

0.0

1.0

2.0

3.0

4.0

Serial SSE 4.2 AVX2

S
p

e
e

d
u

p

Libor calculation speedup

(higher is better)

Configuration: Intel® Xeon® CPU E3-1270 v3 @ 3.50 GHz system (4 cores with Hyper-Threading On), running at 3.50GHz, with 32.0GB RAM, L1 Cache 256KB, L2
Cache 1.0MB, L3 Cache 8.0MB, 64-bit Windows* Server 2012 R2 Datacenter. Compiler options:, SSE4.2: -O3 –Qipo –QxSSE4.2 or AVX2: -O3 –Qipo –QxCORE-AVX2.
For more information go to http://www.intel.com/performance

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark
and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the
results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the
performance of that product when combined with other products. * Other brands and names are the property of their respective owners. Benchmark Source: Intel
Corporation

Optimization Notice: Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not
unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not
guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-
dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel
microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information
regarding the specific instruction sets covered by this notice. Notice revision #20110804 .

Normalized performance data – higher is better

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Impressive Performance Improvement
Intel C++ Explicit Vectorization: SIMD Performance

115

 One line added that take full advantage of
both SSE or AVX

 Pragma’s ignored by other compilers so code
is portable

#pragma simd vectorlength(8)
for (int x = x0; x < x1; ++x) {

float div = coef[0] * A_cur[x]
+ coef[1] * ((A_cur[x + 1] + A_cur[x - 1])
+ (A_cur[x + Nx] + A_cur[x - Nx])
+ (A_cur[x + Nxy] + A_cur[x - Nxy]))
+ coef[2] * ((A_cur[x + 2] + A_cur[x - 2])
+ (A_cur[x + sx2] + A_cur[x - sx2])
+ (A_cur[x + sxy2] + A_cur[x - sxy2]))
+ coef[3] * ((A_cur[x + 3] + A_cur[x - 3])
+ (A_cur[x + sx3] + A_cur[x - sx3])
+ (A_cur[x + sxy3] + A_cur[x - sxy3]))
+ coef[4] * ((A_cur[x + 4] + A_cur[x - 4])
+ (A_cur[x + sx4] + A_cur[x - sx4])
+ (A_cur[x + sxy4] + A_cur[x - sxy4]));

A_next[x] = 2 * A_cur[x] - A_next[x] + vsq[s+x] * div;
}

1.00

3.92

6.67

0

1

2

3

4

5

6

7

Serial SSE 4.2 AVX2

S
p

e
e

d
u

p

RTM-Stencil Speedup

(higher is better)

Configuration: Intel® Xeon® CPU E3-1270 v3 @ 3.50 GHz system (4 cores with Hyper-Threading On), running at 3.50GHz, with 32.0GB RAM, L1 Cache 256KB, L2
Cache 1.0MB, L3 Cache 8.0MB, 64-bit Windows* Server 2012 R2 Datacenter. Compiler options:, SSE4.2: -O3 –Qipo –QxSSE4.2 or AVX2: -O3 –Qipo –QxCORE-AVX2.
For more information go to http://www.intel.com/performance

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark
and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the
results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the
performance of that product when combined with other products. * Other brands and names are the property of their respective owners. Benchmark Source: Intel
Corporation

Optimization Notice: Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not
unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not
guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-
dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel
microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information
regarding the specific instruction sets covered by this notice. Notice revision #20110804 .

Normalized performance data – higher is better

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Impressive performance improvement
Intel C++ Explicit Vectorization using OpenMP* 4.0 SIMD or Intel® Cilk™ Plus

116

1.00 1.00 1.00 1.00 1.00 1.00 1.00

2.91 2.99 2.97

2.28
2.73

3.92

2.93

6.11

4.75

5.92

5.29

4.10

6.67

5.40

0

1

2

3

4

5

6

7

AoBench Collision Detection Grassshader Mandelbrot Libor RTM-Stencil Geo Mean

S
p

e
e

d
u

p

SIMD Speedup on Intel® Xeon® Processor

(Higher is better)

Serial SSE 4.2 AVX2

Configuration: Intel® Xeon® CPU E3-1270 v3 @ 3.50 GHz system (4 cores with Hyper-Threading On), running at 3.50GHz, with 32.0GB RAM, L1 Cache 256KB, L2 Cache 1.0MB, L3 Cache 8.0MB, 64-bit Windows* Server 2012 R2 Datacenter. Compiler options:, SSE4.2: -O3 –Qipo –QxSSE4.2 or AVX2: -O3 –Qipo –QxCORE-AVX2. For more
information go to http://www.intel.com/performance

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to
vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. * Other brands and names are the property of their respective owners. Benchmark Source: Intel Corporation

Optimization Notice: Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the
availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. Notice revision #20110804 .

Normalized performance data – higher is better

